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We dedicate this paper to the memory of Selim Grigor’evich Krein – an outstanding mathematician and man

The famous classical S. Krein problem of small motions and normal oscillations of a viscous fluid in a partially
filled container is investigated by a new approach based on a recently developed theory of operator matrices
with unbounded entries. The initial boundary value problem is reduced to a Cauchy problem

��

��
��� � ���� � ���� � �

�
�

in some Hilbert space. The operator matrix � is a maximal uniformly accretive operator which is selfadjoint
in this space with respect to some indefinite metric. The theorem on strong solvability of the hydrodynamic
problem is proved. Further, the spectrum of normal oscillations, basis properties of eigenfunctions and other
questions are studied.

1 Introduction

1.1 On the history of the problem

We investigate the classical problem on small motions and normal oscillations of a viscous incompressible fluid
in an open rigid immovable vessel. By using functional analytical–methods the first investigations of the problem
were carried out in the sixties of the last century and are connected with works of S. G. Krein and his students (see
[29], [32], [3]). In those publications normal oscillations, i.e., motions with dependence on the time � according
to the law ��������, were studied and the spectral problem

����� ��
�
� � �� � ����

�
� � � (1.1)

was obtained where � is a compact and positive operator and � a compact and nonnegative operator acting in
some Hilbert space.

Problem (1.1) generated numerous investigations. We mention here the works of W. H. Greenlee [15, 16],
A. S. Markus and V. I. Matsaev [34], A. G. Garadzhaev [13], N. D. Kopachevsky [20] – [22]. Two approaches
were applied for studying the problem (1.1). The first one was based on a direct investigation of the operator
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pencil ���� (factorization methods etc.), the second one was the method of changing the spectral parameter to
reduce the problem (1.1) to an eigenvalue problem for some operator matrix with bounded entries. The transfor-
mations � � ����� (S. G. Krein, G. I. Laptev), � � ����� (W. H. Greenlee) were used, however the obtained
spectral problem was in some sense not adequate to the original initial boundary value problem on small motions
of a viscous fluid in a vessel. In particular, the solutions of the initial problem cannot be developed into a Fourier
series by the corresponding eigensolutions.

The second way of investigations of the problem (1.1) was based on the application of operator theory in
spaces with an indefinite metric, in particular, on using deep results of M. G. Krein and H. Langer [27, 28] on
quadratic operator pencils. In this direction we mention the results of E. A. Larionov [33], T. Ya. Azizov [5],
A. G. Kostjuchenko and A. A. Shkalikov [24, 25], T. Ya. Azizov and N. D. Kopachevsky [7]. The main point in
these investigations is the reduction of equations with unbounded operator coefficients to equations with bounded
ones. On this way it is however difficult to see the connection between the solutions of the evolution equation
and the corresponding spectral problem.

Detailed applications of the above–mentioned approaches and a description of the solution properties of
the problem (1.1) and the corresponding initial boundary value problem was considered in the monograph by
N. D. Kopachevsky, S. G. Krein and Ngo Zuy Can [23, Chapter 7].

1.2 Application of operator matrix theory with unbounded entries

Recently operator matrices became an effective tool of investigations in some problems of hydrodynamics and
magnetohydrodynamics. These matrices act in orthogonal sums of Hilbert spaces and have unbounded entries.
The domains of the entries have to be related in some way. As a rule, such operator matrices are a priori not
closed. The research of these mathematical objects was carried out in the papers of F. V. Atkinson, H. Langer,
R. Mennicken, A. A. Shkalikov [4], V. M. Adamyan, H. Langer [1], V. M. Adamyan, H. Langer, R. Mennicken,
J. Saurer [2], M. Fairman, R. Mennicken, M. Möller [9] – [11], V. Hardt, R. Mennicken, S. Naboko [17], R. Men-
nicken, A. A. Shkalikov [35], A. A. Shkalikov [39], A. Yu. Konstantinov [19], T. Ya. Azizov, N. D. Kopachevsky,
L. D. Orlova [8] and others.

As a final result, it was shown that the (closure of the) operator matrices lead to unbounded operators, which
are adequate, in some sense, to both the initial boundary value problem and the corresponding spectral problem.

This new approach will be applied in the present paper to the problem on small oscillations of a viscous fluid
in an open vessel. First, we reduce the problem to a Cauchy problem

�	

��
��	 � 
 � 	��� � 	� � (1.2)

in the orthogonal sum of two Hilbert spaces, which is connected with the velocity field of the viscous fluid in a
vessel and with the vertical displacement field of the moving free surface by the relation (3.11). Therefore, the
operator coefficient� in the equation (1.2) is a 	� 	 operator matrix acting in the orthogonal sum of two Hilbert
spaces.

The spectral problem

�	 � �	 � 	 � ���� � (1.3)

corresponding to the evolution problem (1.2) is investigated. The theorem on strong solvability of the initial
boundary value problem is proved by using the fact that the operator � is a maximal uniformly accretive and
� –selfadjoint operator. The representation of the solution of the initial boundary value problem in a Fourier
series by root elements of the spectral problem (1.3) is proved.

2 Preliminary information

In the present paper we use some assertions which arise in functional analysis and the theory of elliptic boundary
value problems. Further we apply some statements which stem from the theory of vector–valued Sobolev spaces.
These assertions are written down in this section for the convenience of the reader.
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2.1 The spaces �
�

� and ��
�

�

The Hilbert space � is called densely embedded in the Hilbert space 
 if � is a dense linear subset of 
 and
there exists a constant � � � such that

���� � � ���� (2.1)

for all � � � .

Definition 2.1 The Hilbert spaces � and
 form a Hilbert pair �� 

� if � is densely embedded in the Hilbert
space 
.

Let �� 

� be a Hilbert pair and � the adjoint of the embedding of � into 
. The operator � is positive as an
operator acting from 
 into 
. If � is compactly embedded in the space 
, then � is a compact operator in 

as the adjoint of a compact operator.

Consider the inverse operator� �� � �� � ���� � � 	 
. The operator� has the following property

������� � ��� ��� �� � �� � � ����� � (2.2)

Further the square root of � exists. It is well–known (see, for example, [18] Chap. VI Theorem 2.1 and Theo-
rem 2.23) that �

�
�

�
�

�
� � and�

�
�
� ���

�
� 	
�
�

�
�
�� 	
�
�

��� 	 � � 
 
� � (2.3)

Definition 2.2 The operator� is said to be the generating operator of the Hilbert pair �� 

�.

We introduce the Hilbert space 

�
� with the help of the operator � in the usual way (see, for example, [23]).

We denote the domain of the operator�
�
� by 


�
� . This vector space is a Hilbert space with scalar product�

�� 	
�
�

�
�

��
�
�

�
����

�
� 	
�
�

�
�� 	 � �

�
�

�
�

�

 


�
� (2.4)

We conclude from formula (2.3) that � � 

�
� and ���� � ���

�
�
�

. Further we introduce a new norm on the
space 
 by

���
��

�
�

��
���� �

� �
��
�

�� � 
� � (2.5)


�
�
� denotes the completition of the space 
 with respect to this norm. We remark that the spaces 
� and 
��

can be introduced in the same way for � � � and the set 
� ��� � � ��� is called a scale of Hilbert spaces.
In the following we describe the space 
�

�
� more explicitly. For � � 
 we define the antilinear functional ��

on � by ���	� �� ��� 	�� �	 � � �. From the inequality�����	��� �
����� �

����
�
� 	
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�� � ���� �
� �
��
�

��� �
� 	
��
�

�
���� �
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��
�
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�
�
�

for all 	 � 

�
� we obtain that �� is bounded and

������� � ���� �
��
��
�
� For � � ���� we conclude that
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Therefore,

������ �
���� �

��
��
�
�

Hence, the space 
 can be embedded into the space � � of bounded linear functionals on � . The above formulae
yield that the completition 
�

�
� of the space 
 can isometrically identifyed with some subspace of � �. We

will show that this subspace coincides with the whole space � �. Indeed, let 	� � � such that 
�	�� � � for
all functionals 
 from the above mentioned subspace. Then for all � � 
 we have � � ���	�� � ��� 	��� ,
and therefore 	� � �. Consequently, the space 
�

�
� is isometrically identified with the space � �, i.e., 
�

�
� �
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� � �
�



�
�

��
. Let 
 � � � �� be the canonical sesquilinear form with respect to the pair

�

�

�
� � 


�
�

�
� �� �� � �. In

particular we have


�� 	�� � ���	�
�
� � 
� 	 � 


�
� � �

�
� (2.6)

The above considerations yield that the formula


�� 	�� � ��

���

���� 	�� �
�
���� 
 
� �� 	 � �� 
�

�
� � 	 � 


�
� � �

�
� (2.7)

and the inequality��
�� 	���� � ���
��

�
�
�	�

�
�
�

�
� � 
�

�
� � � �� 	 � 


�
� � �

�
� (2.8)

Remark 2.3 If � is not a linear subset of 
, but there exists a one–to–one mapping of the space � onto
a dense set in 
 and this mapping conserves algebraic operations (a so called embedding operator of � into

), then one can identify � with the range of this mapping. If the inequality ���� � � ���� holds, then all
arguments mentioned above are conserved.

2.2 Generalizations

In this section we consider the case that the mapping mentioned in Remark 2.3 is not one–to–one.
Let the linear operator � (in the examples it is the trace operator) be defined on the Hilbert space � and act

boundedly into the Hilbert space �, i.e., � � � 	 � such that

����� � � ���� �� � � � � (2.9)

Denote the kernel of � by � , i.e., � �� Ker �. The equation (2.9) yields that � is a subspace (closed linear
subset) of the space � and we define

� �� � �� � �� � (2.10)

Further we denote the range���� of the operator � by �� 
 �. It is evident that the restriction

�� �� ��� (2.11)

(in the examples � is the subspace of holomorphic functions) of the operator � to the subspace � realizes a
one–to–one mapping of � onto ��. It allows us to introduce the structure of a Hilbert space on �� by the rule

��� ���� �� ��� ��� ��� � ��� ��� � �� ��� � �� � (2.12)

Then

����� � ���� �� ��� ��� � �� � (2.13)

Let � � � and �� � �. For any element � � �� exists a unique element � � � such that ��� � �. Obviously
�� � � � . Further,

����� � �� � ��� ����� � ����� � ��� ���� �

Hence, the equation (2.13) and this equality yield that

������
� ����� � ����� �� � �� �� � �� �

Therefore

����� � 
��
�	�


���� � (2.14)
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Suppose now that �� is densely embedded into �. It follows from the inequality (2.9) that for � � ��, � � �
and ��� � �

���� � ������ � � ���� � � ����� � (2.15)

This means that the spaces �� and � form a Hilbert pair ���
��. Therefore, we can construct the Hilbert
spaces ��

�
� such that �� � �

�
� and��

�
� can be identified with the space �����.

Consider the operator �� as a mapping from the Hilbert space
�
�� � � � � ��

�
into the Hilbert space�

��� � � � � ���

�
. Let ��� denote its adjoint operator. Since the operator �� maps the space � isometrically

onto the space �� � �
�
� (see (2.13)), i.e.,

������� � ���� �� ��� � (2.16)

the operator ��� maps the space �� isometrically onto the space � . Identifying the isometrically isomorphic
spaces �� and ��

�
� � �����, we consider ��� as an isometric operator from ��

�
� onto � . By definition�

����� �
�
�

�
�
�� ���

�
��

� 
�� �����
�
� � ��

�
� � � ��

�
� (2.17)

We introduce the operator

�� �� �����
�� � � �	 ��

�
� � (2.18)

Then the equation (2.17) yields that

��� ��� � 
���� ����� ��� � ��� � (2.19)

It follows from the properties of the operators �� and ��� that the operator � �� ���
�
� maps the space ��

�
�

isometrically onto the space �
�
� 
 �. The restriction  �� � �� is a bounded operator acting in the space �. To

prove the last assertion, let � � � and � �� . We conclude from the equations (2.17) and (2.9) that�������� ��� �� �
��
�� ������� �

����� ������� � ���� ������ � � ���� ���� �

Substituting � � ���� we obtain

������
�
� � � ���� ��

�
���� �

and therefore

������� � � ���� �� � �� � (2.20)

Consequently, by (2.9), (2.20)

� ��� � ����
�
���� � � ������� � �� ���� �� � �� � (2.21)

and therefore the operator  is bounded.
If the embedding of the space �� into � is compact, i.e., the (trace) operator � is compact, then the operator

 is compact on the space �.
It follows from the identity (2.17) that�

����� �
�
��
�
�

� 
�� ���
�
���� �

�
�� ���

�
��
�
�

� ��� ��� (2.22)

for �� � � �. Therefore, the operator  is selfadjoint and positive. The formulae (2.22) and (2.12) yield that

� �� ���� � ��� ��� ��� � � �� � (2.23)

By the substitutions  � � ��,  � � �� we obtain from (2.23) that� ��� �� �
��

�
�
 �� ��� �� �

�

���� �� � �� ���� � (2.24)

This identity holds also for �� � �� � �
�
 ��

�
which means that the operator  �� is a generative operator of

the Hilbert pair ���
�� (see (2.2)).
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2.3 The main example

Apply the above approach to some special case which is the situation of the problem discussed in this paper.
Consider a region � 
 �� with Lipschitz boundary �� and suppose that �� is the union of two surfaces

�� �� � � ! where � � ! � �, � and ! have nonzero surface measure and are open subsets.
Let "���� denote the Sobolev space of first order and introduce the Hilbert space

� �� "�
���� ��

�
� � "���� �

�
�

� �� � �

�
� (2.25)

with the norm

���� � �����
���	

��

��
�

����� ��

	�
�

� (2.26)

"�
���� is a subspace (with codimension �) of the usual Sobolev space "���� and the Dirichlet norm (2.26) is

equivalent to the standard norm of"����.
We introduce the space " �� ����� � ���� of functions which are orthogonal to the identical function ��

defined on � in the space �����. Consider the trace operator

� � "�
���� �	 " � �� �� ���

�
� � "�

����
�
� (2.27)

Its kernel

� �� Ker � �


� � "�

���� � � � � ��� ��
�

�� "�
������ (2.28)

is a subspace of the space "�
����. We consider the subspace

� �� � �� � "�
�����"�

������

and find an analytic description of the functions from � . To do this, let � � � , � � � and suppose that � is
twice differentiable in �. The first Green’s formula for the Laplace operator yields that

� �

�
�

�� � �� �� �

�
�

������ �� �

�



��

��
� �! (2.29)

where � is the unit vector of the external normal to the boundary ��. We define the space
Æ

"�
���� by

Æ

"
�
���� ��



# � "�

���� � # � � ��� ���
�

 "�

������ (2.30)

and conclude from formula (2.29) that�
�

�������� � �
�
� �

Æ

"
�
����



� (2.31)

Since
Æ

"�
���� is dense in the space ����� we obtain that

�� � � ��� �� � (2.32)

The identity (2.29) and the relation (2.32) yield that�



��

��
� �! � �

�
� � "�

������
�
� (2.33)

Since the set


��
 � � � "�

������
�

is dense in ���!� we conclude from (2.33) that

��

��
� � ��� !� � (2.34)
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Consequently, the subspace

� � "�
�����"�

������ �� "�
��
��� (2.35)

consists of the following set of (generalized) solutions of the boundary value problems for harmonic functions:

"�
��
��� �

�
� � "�

���� � �� � � ��� ���
��

��
� � ��� !�

�
� (2.36)

Thus we have the orthogonal decomposition

�� �� "�
���� � "�

�������"�
��
��� �� � ��� � (2.37)

We introduce the operator

�� �� ��� � ����
���

��	 � (2.38)

According to Subsection 2.2 �� isometrically maps the subspace � � "�
��
��� onto the space "� � "

�
�

� . The

norm in "
�
�

� is defined by (see (2.14), (2.16)):

���
�

�
�
�

�� 
��
�	�


�����
���	

� �����
���	

�
� � ���� � � "

�
��
���

�
� (2.39)

As a corollary of this fact we obtain the following lemma.

Lemma 2.4 Let � � �����. The Zaremba problem

�$ � � �in �� �
�$

��
� � �on !� � ��$ � � �on �� �

�
�

� �� � � (2.40)

has a unique �generalized � solution $ � "�
��
��� if and only if � � "

�
�

� . In this case the solution $ fulfills the
equality

�$���
���	

� ���
�

�
�
�

� (2.41)

Now we consider the operator ��� and its inverse �� ��
�
���
���

. By definition (see (2.19))

��� ����
���	

�

�
�

�� � �� �� � 
���� �����
�
�� � � "�

��
���
�
� (2.42)

For twice differentiable functions � � "�
��
��� we conclude from Green’s formula and (2.42) that�

�

�� � �� �� �

�
�

������ �� �

�
�

��

��
� �� �

�



��

��
� �! �

�
�

��

��
� ��

� 
���� ����� � ����� ����� �

�
�

���� �� �

Hence, �
�

�
����

��

��

	
� �� � �

�
� � "�

��
���
�

and, therefore,

��� �
��

��

����
�

� (2.43)

The isometry property of the operator

�� �
�
���
���

� � � "�
��
��� �	 "� �� �"��� �

�
"

�
�

�


�
�� "

� �
�

�

(see Subsection 2.2) yields the following assertion.
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Lemma 2.5 Let � � �����. The Neumann problem

�� � � �in �� �
��

��
� � �on !� �

��

��
� � �on �� �

�
�

� �� � � (2.44)

has a unique �generalized � solution � � "�
��
��� if and only if � � "

� �
�

� �
�
"

�
�

�


�
. In this case the solution

� fulfills the equality

�����
���	

� ���
�
�
�
�

�

� (2.45)

2.4 Orthogonal Weyl decomposition of the Hilbert space �����

In the investigation of the motions of a fluid in an arbitrary region � 
 �� we deal with the velocity (or displace-
ment) fields of the moving fluid. These fields must give finite kinetic energy and must therefore belong to the
Hilbert space ����� of vector fields � with norm

���� ��

�
�

���� �� (2.46)

and corresponding scalar product

����� ��

�
�

� � � �� � (2.47)

Definition 2.6 A field � � ����� is said to be a potential field if there exists a $ � "���� such that � � �$
and

�
�
$ �� � � where � 
 �� is a part of �� with nonzero surface measure.

For a potential field � � �$ we have

���� �

�
�

��$�� �� � � �

�
�

$ �� � � � (2.48)

In "���� a norm is defined by

�$������	 ��

�
�

��$�� �� �

��
�

$ ��

	� �
$ � "����

�
which is equivalent to the Dirichlet norm (2.26). If $ � "����, then � � �$ is a potential field if and only if

��$�� � �$������	 � (2.49)

Remark 2.7 Let ���� be the set of all potential fields in �����. By definition there is a one–to–one corre-
spondence between ���� and "�

���� which is an isometry by (2.49).

Since"�
���� is a complete space, ���� is a subspace of �����. Denote the orthogonal complement of����

in ����� by �����, i.e.,

����� � ����� ����� � (2.50)

Set �� �� � � � for � � 	���� and

������ ��


� � 	���� � div� � � ��� ��� �� � � ��� ���

�
� (2.51)

We will show that ����� is the closure of ������: For any smooth field � � ����� and for arbitrary�$ � ����
we have

� �

�
�

�$ � � �� �

�
�

div
�
$�
�
���

�
�

$ div� �� �

�
��

$ �� �! �

�
�

$ div� �� �
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For test functions $ �  �� ��� we obtain that�
�

$ div� �� � �

and therefore div� � � ��� ��� It follows that�
��

$ �� �! � �
�
$ � "�

����
�

(2.52)

and hence

� � � � �� � � ��� ��� �

Thus, ����� is contained in the closure of ������. The inverse inclusion is immediate.

We consider a further decomposition of the subspace ����. The set
Æ

"�
���� (see (2.30)) is a subspace of the

space "�
���� (see Subsection 2.3). Therefore, by Remark 2.7, the set

����� ��
�
� � �� � ����� � � �

Æ

"
����

�
(2.53)

is a subspace of ����. Repeating the above mentioned calculations (from (2.29) to (2.32)) we conclude that the
orthogonal complement

"�
���� �� "�

�����
Æ

"
����

is the space

"�
���� �



� � "�

���� � �� � � ��� ��
�
� (2.54)

Hence we have the decomposition

���� � ����������� � (2.55)

where

����� ��



 � �� � ����� � � � "�

����
�
� (2.56)

As a final result we obtain the so–called Weyl decomposition (see, for instance, [23])

����� � ����������������� � (2.57)

2.5 Operations div u and �� for vector fields from �����

Let $ �
Æ

"�
����, i.e.,�$ � �����, and � is a smooth field. Then

��$��� �

�
�

�$ � � �� �

�
�

div �$�� ���

�
�

$ div� �� � �

�
�

$ div� ��

�� �
�
$� div�

�
����	

�
(2.58)

If � � ����� is arbitrary and �� 	 � �% 	��, where the �� are smooth, then formula (2.58) yields that

��$��� � � ��

���

�
$� div��

�
����	

�� �
$� div������	 (2.59)

for all $ �
Æ

" �
���� and � � �����. Therefore div� is a linear bounded functional (distribution) on the space

Æ

"�
���� 
 ����� for all � � �����:

div� �
� Æ
"

�
����


�
�� "����� � �div�������	 � ��� � (2.60)
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Consider now the operation �� �� � � � (on ��). Let $ � "�
����, i.e., �$ � ����, and let � � ����� be a

smooth function and div� � �. As above (see (2.58)) we have

��$��� �

�
�

div �$�
�
���

�
�

$ div� �� � ���$� ��������	 � (2.61)

where �$ �� $���. After limit transition (�� 	 � as % 	�, div�� � �) identity (2.61) yields�
�$��

�
� � ��


���

�
�$� �����

�
�����	

�� �
�$� ��������	 (2.62)

for all $ � "�
���� and � � ����� with div� � �. We also use the identity


���� ��������	 � � (2.63)

which can be derived as above for $ � �. The formulae (2.62) and (2.63) yield that

��$��� � � 
�$� ��������	 �$ � "����� � � ������ div� � �� � (2.64)

Here the set


�$
�

coincides (by embedding and trace theorems) with the whole space"
�
� ���� if $ pass through

the space "����. Therefore �� is a bounded linear functional on the space "
�
� ���� with respect to the scalar

product in ������ and

�� � "
� �

� ���� ��
�
"

�
� ����

��
� ����

��
�
� ���	

� ��� � (2.65)

2.6 Orthogonal decomposition of the space ����� connected with the problem on small oscillations of a
fluid in an open vessel

If a homogeneous ideal or viscous fluid partially fills a vessel � 
 �
� with rigid wall ! and free surface � then

the velocity field of the fluid must be divergence free and the normal component of the field must be equal to
zero on !. Since such fields belong to both subspaces ����� and ����� in decomposition (2.57), we need an
additional decomposition of the subspace �����. We formulate the corresponding facts without proofs (see, for
instance, [23]).

Introduce the subspaces

��������� ��


� � �$ � ����� � $ � � ��� ��

�
(2.66)

and

���
��� ��

�
� � �� � ����� � �� � � � � � �� � � �

��

��
� � ��� !�

�
(2.67)

of the subspace �����. One can check directly that ��������� and ���
��� are orthogonal. Moreover, the
decomposition

����� � �������������
��� (2.68)

holds. Hence, the new decomposition of the space ����� has the form

����� � ���������
������������������� � (2.69)

We introduce the subspaces

���
��� �� ���������
��� � (2.70)

������� �� ��������������� � (2.71)

���� �� ���
����������� (2.72)
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and obtain

����� �


� � ����� � div� � � ��� ��� �� � � ��� ���

�
� (2.73)

���
��� �


� � ����� � div� � � ��� ��� �� � � ��� !�

�
� (2.74)

������� �



 � �$ � ����� � $ � � ��� ��

�
� (2.75)

���� �

�
� � ������ � � �$ �in ���

�
�

$ �� � �

�
� (2.76)

Here ���
��� is the subspace of velocity fields of a homogeneous fluid in an open vessel, and the orthogonal
decomposition

����� � ���
����������� (2.77)

holds. In the formulae (2.73) and (2.74) the operators div� and �� are understood as distributions in the sense
described in Subsection 2.5.

3 The statement and investigation of the initial boundary value problem

3.1 The statement of the problem

We assume that a rigid immovable vessel is partially filled with a heavy viscous incompressible homogeneous
fluid of density & � � and kinematic viscosity ' � �. The fluid is in an equilibrium state under a gravitational
field with constant acceleration � � �(��, where ( � � and �� is the unit vector of the vertical axis )��, which
is directed opposite to �. � 
 �

� denotes the domain filled with a fluid in equilibrium state, ! the rigid wall
of the vessel adherent to the fluid, and � the free surface of the fluid. We take the origin ) of the Cartesian
coordinate system )������ on �. Then the equation of the surface � has the form �� � �.
*� � *���� denotes the pressure in the fluid in equilibrium state, where � � ���� ��� ��� � �. Since the

equilibrium condition

�&���*� � (�� (3.1)

must be fulfilled

*���� � �&(�� � $� � (3.2)

where $� is a constant external pressure.
We consider small motions of the fluid near to the equilibrium state. We assume that the difference $��� ��

between the full pressure * ��� �� in the process of small motions and the static pressure *���� is an infinitesimal
function. We denote the small velocity field in the fluid by ���� �� and the vertical displacement of the free surface
from the equilibrium by +��� ���, �� � ���� ��� � �. We suppose that the unknown functions ���� ��, $��� �� and
+��� ��� are infinitely differentiable with respect to the first variable.

Consider the linearized Navier–Stokes equation which describes the small motions of a viscous fluid, and
suitable boundary conditions and initial data. The initial boundary value problem has the form (see, for instance,
[23, p. 276]):

��

��
� �&���$� '��� 
 � div� � � �in �� � (3.3)

� � � �on !� �
�+

��
� �� �� � � � �on �� �

�
�

+ �� � � � (3.4)

'

�
���
���

�
���
���

	
� � �, � �� 	
 on �� � �$� 	&'

���
���

� �&(+ �on �� � (3.5)

���� �� � ����� � � � � 
 +��� ��� � +����� � �� � � � (3.6)
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Here 
 � 
��� �� is a small field of external mass forces which acts together with the gravitational field, � is the
unit vector of the external normal to the boundary ��. We call the first condition in (3.4) the adhesion condition
of the particles of the viscous fluid to the immovable rigid wall !. Respectively, we call the second relation in
(3.4) the kinematic condition. It means for small motions of the fluid that a particle of the fluid, which is located
on the moving free surface at some moment, remains there also in the future. The last condition in (3.4) follows
from the conservation of the fluid volume during the motion. Further, the first condition in (3.5) means that the
tangential stresses in the viscous fluid vanish because such stresses are equal to zero in the exterior medium. The
last condition in (3.5) follows from the vanishing of the normal stress on the moving free surface of the fluid.
Finally, the conditions (3.6) give us the initial velocity field in the domain � and the initial displacement of the
free surface from the equilibrium �.

3.2 Orthogonal subspaces and auxiliary boundary value problems

We shall investigate the problem (3.3) – (3.6) by transforming it to a Cauchy problem for a differential operator
equation in some Hilbert space. To this end we introduce the Hilbert spaces and some subspaces which will be
used later, and we also consider two auxiliary boundary value problems.

We suppose that the boundary �� is a piecewise smooth surface with nonzero inner and outer angles. We
assume that the unknown fields ���� �� and�$��� �� are functions of � with values in the Hilbert space ����� of
vector–functions with scalar product

����� ��

�
�

���� � ���� �� �

We assume that the unknown function +��� ��� is a function of � with values in the Hilbert space ����� with scalar
product

�+� -�� ��

�
�

+����-���� �� �

The last condition in (3.4) shows that for each � +��� ��� belongs to the Hilbert space " �� ����� � ���� of
functions from ����� that are orthogonal to the function �� identically equal to � on �.

In the sequel, we use the orthogonal decomposition

����� � ���������
����������� � (3.7)

which is naturally connected with the problem on small oscillations of a viscous fluid in a vessel (see Subsec-
tion 2.6, formulae (2.69) – (2.77)).

Suppose that the problem (3.3) – (3.6) has a solution for which all terms in the first equation of (3.3) are con-
tinuous functions of � with values in �����. We conclude from the equations (3.3) and the boundary conditions
(3.4) that

���� � � � ���
��� � ���
���� ������ (3.8)

�$��� � � � ���� � �����������
��� � (3.9)

Further, we introduce the orthoprojections *��
 and *��� from ����� onto the subspaces ���
��� and �������,
respectively (*��
 � *��� � �). Then

*��
���� �� � ���� �� � *��
�$��� �� � ��$��� �� � ���
��� �

*����$��� �� � �.��� �� � ������� �
(3.10)

Applying the orthoprojections *��� and *��
 to both sides of the first equation in (3.3), we obtain that

� � � &���.� '*������ *���
 � (3.11)

��

��
� � &����$� '*��
��� *��

 � (3.12)
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The relation (3.11) shows that the field�. is calculated immediately if we know the velocity field �. Thus in the
sequel, we shall investigate the equation (3.12), which does not contain �., and also the boundary conditions
(3.4), (3.5) (with the change $ �	 �$ because $ � �$� ., . � � (on �), see (2.75)) and the initial data (3.6).

Remark 3.1 If the field � is solenoidal and �� � � (on !), then�
�

�� �� �

�
�

�� �� � � �

The same property holds also for any surface �� described by the equation �� � ��, where � is a small positive
number. Hence for the classical solution � of the problem (3.3) – (3.6) we have�

�

���
���

�� � � �

Taking into account the last condition in (3.4), we obtain from the last condition in (3.5) and the above–mentioned
relation that

�
�
$ �� � �. Therefore�$ � ���� (see (3.9)) for the problem (3.3) – (3.6).

Now consider auxiliary boundary value problems and corresponding operators. As in Subsection 2.3 we

introduce the Hilbert space "�
���� (see (2.25), (2.26)) and the space "

�
�

� �� "
�
� ��� �" , " �� ����� � ����

with the norm (2.39).

Auxiliary problem 1Æ (Zaremba problem for the Laplace operator, see Lemma 2.4). Solve the following
boundary value problem in the unknown function $� � "�

��
��� 
 "�
����:

�$� � � �in �� �
�$�
��

� � �on !� � $� � � �on �� (3.13)

for � � " , i.e., � � ����� such that
�
�
� �� � �.

Lemma 3.2 For any � � "
�
�

� the auxiliary problem 1Æ has a unique solution $� � "�
��
��� 
 "�

���� and

�� �� �$� � ���
���. The operator � � "
�
�

� 	 ���
��� is an isometry. The same operator � � " �

������ ����	 ���
��� 
 ���
��� is an unbounded closed operator with dense domain���� �� "
�
�

� �

P r o o f. The unique existence of the solution $��"�
���� was proved in Lemma 2.4. Further, the formulae

(2.67) and (2.41) together with the considerations of the Subsections 2.4 and 2.6 yield that�$����
��
��� and

��$�� � ���� � �$����
���	

� ���
�

�
�
�

� (3.14)

i.e., � � "
�
�

� 	 ���
��� is an isometry.

Consider now the operator� as an operator � � ���� � "
�
�

� 
 " 	 ���
��� and check that � is a closed
operator. � can be represented in the form � � � Æ �� where � � "�

��
��� 	 ���
��� is a isometry (see
(3.14)) and

�� � ����� � "
�
�

� 
 " 	 "�
��
��� 
 "�

���� � ��� �� $� � "
�
��
��� 
 "�

���� �

Evidently, it is sufficient to prove the closure of the operator��.
Let �������� 
 ����� such that �� 	 � in " and $� �� ���� 	 # � "�

����. We must prove that
� � ����� and ��� � #. We know that $� � ���� � "�

��
��� 
 "�
����. Since "�

��
��� is a subspace of
the space "�

���� (see (2.37)) we obtain that # � ��
��� $� � "�
��
���. The isometry property for elements

from "�
��
��� and"

�
�

� (see Lemma 2.4) yields that

# � ��
�� � �� � " �

�

� � �#���
���	

�
����

����
��
���	

�
�� ����

�
�
�
�

�
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Since the operator���� � "�
��
���	 "

�
�

� is also an isometry we conclude that

�� � ���� $� �	 ���� # � �� � " �
�

�

�
��
 �� "

�
�

�



and therefore

���� � ����
�

�
�
�

	 � (% 	 �). Remember that the space "
�
�

� is densely and compactly embedded

into " . Hence, ���� � � ���
�

�
�
�

for all � � "
�
�

� . It follows that

���� � ����� � � ��� � ����
�

�
�
�

�	 � �% 	�� �

Consequently,�� 	 �� and�� 	 � in" . This means that� � �� � ���� # � "
�
�

� � ����� and��� � #.

Now we introduce the subspace

����
��� ��


� � 	���� � div� � � �in ��� � � � �on !�

�
(3.15)

of the vector field space 	���� and associate the quadratic form


����� ��
�

	

�
�

��
�����

���� ������
�
���
���

����� �� �
and the corresponding bilinear one 
����� with it. If � denotes the velocity field in the viscous fluid, the
form &'
����� is equal to the dissipation velocity of the energy in the domain �. We mention that on the
subspace ����
��� the norm in the form �
������

�
� is equivalent to the standard norm of the space 	���� (see

[23, Section 2.2]).

Auxiliary problem 2Æ (The first auxiliary S. Krein problem). Solve the following boundary value problem
in the unknown functions � � ����
��� and�$� � ���
���:

�'*��
��� &���$� � 
� � div� � � �in �� �

� � � �on !� � '

�
���
���

�
���
���

	
� � �, � �� 	
 on �� �

�$� � 	&'
���
���

� � �on �� �

(3.16)

Before we investigate the Problem 2Æ we give some preliminary explanations. Let � � ����
��� � 	����.

By the embedding theorem we conclude that ����/����
��
�
� "

�
�

� since � � 	����. For an unknown field
�$� � ���
��� the definition of the space ���
��� yields that the functions � and�$� are a solution of (3.16)
iff $� is a solution of the following Zaremba problem:

�$� � � �in �� �
�$�
��

� � �on !� � $� � 	&'
���
���

�on �� �

By Lemma 3.2 we obtain that

&���$� � 	'�
���
���

����
�

�� ' 0�� � (3.17)

and we can write the first equation in formula (3.16) in the form

' ��� �� �'
�
*��
��� 0��

�
� 
� � (3.18)
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Here the operator �� is defined on the set

�
�
��
�

��

�
� � ����
��� �	���� �

���
���

�
���
���

� � �, � �� 	
 on ��

�
� (3.19)

which is dense in ����
���.

Let � � �
�
��
�
, � � ����
���. Then the following Green’s formula is valid (see [23, p. 115]):�

�

�
�'*��
��� &���$�

�
� � �� � '
����� �

�
�

�
�&��$� � 	'

���
���

	
�� �� � (3.20)

This formula yields for the Problem 2Æ:

Definition 3.3 A function � � ����
��� is said to be a generalized solution of the Problem 2Æ if for all
� � ����
��� the identity

'
����� � �
���� (3.21)

holds.

Lemma 3.4 If 
� � ���
���� then Problem 2Æ has a unique generalized solution � � '�����
� where �
is the operator of the boundary value Problem 2Æ. The operator � is a selfadjoint and positive definite �strictly
positive� Friedrichs extension of the operator �� given by (3.18), (3.19) in the space ���
��� and has the following
properties:

1) ���� 
 �
�
�

�
�

�
� ����
��� 
 ���
���, ���� � ���
���.

2) For all � � ����, � � ����
��� the identity

������ � 
�����

holds. If �� � � ����
���, we have


����� �
�
�

�
��� �

�
� �
�
�

3) The inverse operator ��� is compact and positive, and acts in the space ���
���.
4) The operator � has a discrete spectrum ����������� with accumulation point �� and with asymptotic

behavior

����� �

�
mes�
�1�

	����
2����� � 3���� �2	�� � (3.22)

P r o o f. See [23, p. 277 – 279]. The asymptotic formula (3.22) was obtained by G. Metivier [36].

3.3 Transition to a system of differential operator equations

Return to the initial boundary value problem (3.3) – (3.6) and suppose that it has a classical solution
����� ��� $��� ��� +��� ����. For the solution the relations (3.10) – (3.12), the boundary conditions (3.4), (3.5)
(with the change $ �	 �$) and the initial data (3.6) are fulfilled. We also assume that ���� �� is an element of
the subspace ���
��� for all �, ��$��� �� is an element of the subspace ���
���, and +��� ��� is an element of the
subspace " � ������ ����.

Represent��$ � ���
��� in the form

��$ � �$� ��$� � �$� � ���
��� �, � �� 	� � (3.23)

and suppose that $� is a solution of the auxiliary Problem 1Æ for � � &(+, and $� is the unknown function from
auxiliary Problem 2Æ (see (3.16)). Then by Lemma 3.2 and definition of the operator� we have

�$� � &(�+ � (3.24)
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Taking into account the formulae (3.23), (3.24), we can rewrite the equation (3.12) in the form

' ��� � 
� �� �
��

��
� *��

 � (�+ � (3.25)

Here we mention that, by the last boundary condition (3.5), the function +��� ��� from the classical solution of
problem (3.3) – (3.6) is continuously differentiable in its arguments. In particular, the function +��� ��� belongs to

the space "
�
�

� � "
�
� ��� � " and �+/�� � " . Therefore the element 
� from the right side of Equation (3.25)

belongs to the space ���
���, and, by Lemma 3.4, the function � � ���� has the form

� � '�����
�
�
��

��
� (�+ � *��



	
� (3.26)

As a final result we formulate the following theorem.

Theorem 3.5 The classical solution of the initial boundary value problem (3.3) – (3.6) is the solution of the
Cauchy problem for the system of operator differential equations

��

��
� '��� (�+ � *��

 �� 
��
 �

�+

��
� ��� � � � ���� � �� � +��� � +� �

(3.27)

and for the solution relation (3.11) is fulfilled. Here� is the operator of Problem 2Æ,� is the operator connected
with Problem 1Æ, and �� is the trace operator of the normal velocity component:

��� �� �� � � � �
��
�

�� � ���
���� � (3.28)

Consider properties of the operator �� defined on ����
���:

Lemma 3.6 The operator �� with domain

����� �� ����
��� 
 ���
��� (3.29)

has the following properties:

����
��� 
 ����� � �� � ����������	 � (3.30)

P r o o f. Let � � ����
��� and � � "
�
�

� . Lemma 3.2 yields that�$� �� �� � ���
��� and

��$���� �

�
�

�$� � � �� �

�
�

div �$��� �� �

�
��

$� �� �!

�

�
�

$� �� �� � �$�� ����� � ��� ����� �

From this it follows that

������ � ��� ����� � � � "
�
�

� � � � ����
��� � (3.31)

and, therefore, the relations (3.30) hold.

Remark 3.7 The operator �� is equal to the zero operator on the set ����� � ����
���, i.e.,

Ker �� � ����� � ����
��� �

Remark 3.8 It follows from the proof of Lemma 3.6 that the operator �� can be extented to the operator��� with domain ������ � ���
���. Indeed, relation (3.31) holds if on the right–hand side 
�� ����� stands for

� � "
�
�

� and ���� � "� �
�

� �
�
"

�
�

�


�
, i.e., 
�� ����� is the value of the functional ���� on the element � � "

�
�

�

in the scalar product of the space " � ����� � ����. This property holds for any � � ���
���. Then from
Remark 3.7 it follows that Ker ��� � �����.
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Lemma 3.6 yields:

Corollary 3.9 For the operators � and �� the following inclusions hold:

���� 
 �
�
�

�
�

�
� ����� � ����
��� 
 ����� � (3.32)

Thus the initial boundary value problem (3.3) – (3.6) is decomposed into the trivial relation (3.11) and the
Cauchy problem for a system of differential operator equations which can be rewritten in the form

�

��

�
�

+

	
�

�
'� (�

��� �

	�
�

+

	
�

�

��


�

	
�

�
����

+���

	
�

�
��

+�

	
� (3.33)

Here � � ���� and + � +��� are unknown functions (the velocity field of the fluid and the displacement field of
the free surface) with values in ���
��� and" � ������ ����, respectively.

Definition 3.10 The functions ���� ��, +��� ��� and $��� �� � .��� �� � �$��� �� are said to be a strong solution
of the problem (3.3) – (3.6) if the relation (3.11) holds (in the sense of distributions) and the pair ��
 +� is a strong
solution of the Cauchy problem (3.33) in the space� �� ���
����" . This means that for all � � � the functions
� � ���� � ����, + � +��� � ���� and the functions ��/��, �+/��, �����, �+��� are continuous in �, and the
equation and the initial data (3.33) hold.

3.4 Investigation of properties of the matrix operator of the boundary value problem

For simplicity we consider problem (3.33) under the assumptions ' � �, ( � �.
�
If ' and ( are arbitrary positive

numbers, we can use the transformations (
�
� + �	 -, '� �	 �, (

�
�� �	 �.

�
We deal with the Cauchy problem

�

��

�
�

+

	
�

�
� �

��� �

	�
�

+

	
�

�

��


�

	
�

�
����

+���

	
�

�
��

+�

	
� (3.34)

where the operator matrix

�� ��

�
� �

��� �

	
� (3.35)

has the domain

����� � ��������� (3.36)

which is dense in � � ���
��� �" . By the inclusions (3.32) the operator �� is well–defined for any element
from �����.

Lemma 3.11 The operator �� with domain (3.36) is an accretive operator, i.e., for all ��
 +� � ����� the
inequality

Re

�
��

�
�

+

	
�

�
�

+

		
�

� ������ � � (3.37)

holds.

P r o o f. The statement of the lemma follows by direct calculations.

Remark 3.12 It follows from the sequel that �� is not a maximal accretive operator. In particular, this fact
does not allow us to use known results from the theory of contractive semigroups and corresponding theorems on
solvability of differential equations in Hilbert spaces.
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For (3.34) we define new unknown functions ���� and -��� by the transformation

���� � 4������ � +��� � 4��-��� � � � � � (3.38)

Substituting (3.38) in (3.34), we obtain the Cauchy problem

�	

��
���	 � 
� 	��� � 	� � (3.39)

	��� �

�
����

-���

	
� 
��� ��

�

��
���

�

	
4��� � (3.40)

	� �

�
����

-���

	
�

�
��

+�

	
�

�� �� �� � �� �

�
�� �

��� ��

	
� �� �� �� �� �

(3.41)

where � is the identity operator in �.
By (3.37), the operator�� is uniformly accretive:

Re ���	� 	�� � � �	��� � (3.42)

Hence there exists the inverse operator���� (on the range of ��) with the norm������ �� � ��� �

Further investigation of the problem (3.39) is based on the extension of the operator�� to a maximal uniformly
accretive operator. Introduce the operators

5 �� ���
� �

�
� � 5� �� �

� �
�

� � � �
�
5�
�

� ���� � (3.43)

Lemma 3.13 The following relations hold:

5� � 5�
��
���	

� 5� � 5� � �� � (3.44)

�We denote by�� the set of compact operators acting in the Hilbert space.�

P r o o f. The statements of Lemma 3.13 follow directly from the definition of the adjoint operator and from
the representation

5 � ���
� �

�
� �

�
����

�
�

��
�

�
��

� �
�

�

�
�
�
���

� �
�

��
�

�
��

� �
�

�

�
� �5�� �

��
� �

�
�

�
� (3.45)

where �5 �� ���
� �

� is compact (see [23, p. 282]) and �
�
��

� �
�

� bounded.

Remark 3.14 For the operator � �� �5� �5 � �� the asymptotic formula

����� �

�
mes �
��1

	�
�

2�
�
� �� � 3���� �2	�� (3.46)

holds (see [23, p. 283]).

Theorem 3.15 The operator�� from (3.41) has the following factorizations:
a) in Schur–Frobenius form

�� �

�
� �

�5�
� �

�
� �

��
�� �

� �� �55�

	�
� �

� �
�

� 5�

� �

�
� (3.47)
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b� with symmetrical outer factors

�� �

�
�

�
�
� �

� �

��
� 5�

�5 ��

	�
�

�
�
� �

� �

�
� (3.48)

The closure � of the operator�� has the following factorizations:
a� in Schur–Frobenius form

� �

�
� �

�5�
� �

�
� �

��
�� �

� �� �55�

	�
� �

� �
�

� 5�

� �

�
� (3.49)

b� with symmetrical outer factors

� �

�
�

�
�
� �

� �

��
� 5�

�5 ��

	�
�

�
�
� �

� �

�
� (3.50)

The operator� is defined on the domain

���� �

�
	 �

�
�

-

	
� � � � � �

�
�

�
�
�

�
� � ��

� �
�

� 5�- � ����

�
(3.51)

by the formula

�	 �

�
���� ��

� �
�

� 5�-�

�5�
�
�
� � � �-

�
� 	 � ���� � (3.52)

and is a maximal uniformly accretive operator:

Re ��	� 	�� � � �	��� � 	 � ���� � (3.53)

P r o o f. Formulae (3.47) and (3.48) can be verified directly for elements from �����. Further, the second
and the third factors in the right–hand side of (3.47) can be closed by replacing the operator 5� by 5� (Lemma
3.13). Thus we get the operator � from (3.49). After this all factors in (3.49) are closed operators having a
bounded inverse. Therefore the product (3.49) is a closed operator having a bounded inverse. Hence the operator
� is maximal uniformly accretive and the inequality (3.53) holds (after closing the operator�� in (3.42)).

By the same argumentation as above, we can check formulae (3.48) and (3.50). We mention only that the
middle factor in (3.50) has the bounded inverse

�
� 5�

�5 ��

	��
�

�� �
� � ���5�5

���
����5�

�
� � ���55�

���
���
�
� � ���55�

���
5 ���

�
� � ���55�

���
�� �

3.5 Existence theorem for a unique strong solution

Using the properties of the matrix operator � obtained above, we now prove a theorem on the well–posed solv-
ability of the problem (3.3) – (3.6).

Theorem 3.16 If the conditions

�� � ���� � +� � ���� � "
�
�

� � 
��� �  ���� 0 
������ (3.54)

are fulfilled for the Cauchy problem (3.39) – (3.41), then it has a unique strong solution for � � ��� 0 �.
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P r o o f. Instead of the problem (3.39) – (3.41) we consider the Cauchy problem

�	

��
��	 � 
 � 	��� � 	� �

�
��

+�

	
� (3.55)

The first two conditions in (3.54) show that

	� �

�
����

-���

	
� ����� � ����� 
 ���� � (3.56)

It follows from the last condition in (3.54) that 
��
��� �� *��

��� �  ���� 0 
���
����, and therefore by (3.40)


��� �

�

��
���

�

	
4��� �  ���� 0 
�� � (3.57)

Since the operator� is maximal uniformly accretive acting in the Hilbert space� (Theorem 3.15), the problem
(3.55) has a unique strong solution 	 on the segment ��� 0 � fulfilling the conditions (3.56), (3.57) (see, for instance,
[30, p. 166], and also [31], [14], [26]). In this case the operator ���� is a generator of a contractive semigroup
6��� �� �������� and, by (3.53), the estimate

�6���� � 4��� (3.58)

holds. The solution 	 can be calculated by the formula

	��� � 6���	� �

� �

�

6��� 7�
�7� �7 � (3.59)

For 	��� �� �����
 -���� the equation (3.55) holds for all � � ��� 0 �, i.e., the following equations and initial
data are valid:

��

��
���

�
� ��

� �
�

� 5�-
�

� 
��
4
��� � ���� � �� �

�-

��
�5�

�
�
� � � �- � � � -��� � +� �

(3.60)

Here each term is a continuous function in � with values in ���
��� (in the first equation) and in" (in the second
one), respectively.

The second equation yields

-��� � +�4��� �

� �

�

4������	5�
�
�
� ��7� �7 � (3.61)

Substituting this function into the first equation (3.60), we obtain

��

��
��� ���

�
���� � 4����

� �
�

� 5�+� ��
� �

�
� 5�

� �

�

4������	5�
�
�
� ��7� �7

�
� 
��
���4

��� � (3.62)

We conclude from the above (see (3.51), (3.52)) that the function

���� � 4����
� �

�
� 5�+� ��

� �
�

� 5�
� �

�

4������	5�
�
�
� ��7� �7 �� ����� (3.63)

belongs to ����� for all � � ��� 0 � and ������� �  ��� 0 
���
����. By (3.54), i.e., +� � ����, and Lemma

3.13 we obtain5�+� � 5�+� � �
� �

�
� �+� and therefore,�

� �
�

� 5�+� � ���� �+� � �����.

Consider the operator 0 �� �
� �

�
� 5�5�

�
�
�

�
��0 � � �

�
�

�
�
�

��
(see (3.62), (3.43) and Lemma 3.6). Introduce

����� as a Hilbert space with graph norm

�������	 �� ����� � (3.64)
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Then the restriction 0� �� 0
��
����	

is a linear bounded operator acting in �����. Indeed, if � � ����� 


�
�
�

�
�
�

�
� ����
���, then, by Gagliardo’s embedding theorem [12], ��� � "

�
�

� � ����, and Lemma 3.13 yields
that

0�� �� �
� �

�
� 5���� � �

� �
�

� 5���� � ���� ���� � ����� �

Since��� is a bounded operator from ����
��� � �
�
�

�
�

�
into ���
���, we conclude that 0� � �����	 �����

is a linear bounded operator.
The proved fact allows to consider the relation (3.63) as a linear integral Volterra equation of the second kind in

the space ����� (with graph norm (3.64)). Here the known function ������ 4����
� �

�
� 5�+� �  ��� 0 
������,

and the kernel function 0�4������	 of the integral operator is a continuous function in the variables �, 7 and
bounded on �����. Therefore problem (3.63) has a unique solution ���� �  ��� 0 
������ and each term in
(3.63) is an element from  ��� 0 
������.

Thus in the equation (3.62) and in the first equation (3.60) we can open the brackets. Since the operator ��
is bounded and acts from ����� into ���
����, we obtain from (3.60) that the equation (3.39) holds for the
function 	��� � �����
 -����. In this we take into account that formula (3.61) and the property � � ����� yield
that -��� � ����.

As a corollary of Theorem 3.16 we have the following result.

Theorem 3.17 If the conditions (3.54) hold, then the problem (3.3) – (3.6) has a unique strong solution �in
the sense of Subsection 3.3� Definition 3.10� for all � � ��� 0 �. If 
��� �� � �, then for the solution we have the
estimate

����� � ��� � �+��� � ���� �
������� �

��+����
�
� (3.65)

P r o o f. The proof is based on the transformation (3.38). The estimate (3.65) follows from the formula (3.59)
for 
�7� � � and the estimate (3.58).

4 Normal oscillation of a viscous fluid

4.1 The problem on normal oscillations

We consider the homogeneous problem (3.55) and its solutions of the form

	��� � 	 �������� � 	 � � � � � � � (4.1)

will be called normal oscillations. Here � is a complex frequency of the oscillations and 	 an amplitude element.
Substituting the function (4.1) into the homogeneous equation (3.55), we obtain the spectral problem

�	 � �	 � 	 � ���� (4.2)

for the amplitude elements 	. Here � is the matrix operator defined by formulae (3.49) – (3.52). We shall call �
the operator associated with the initial boundary value problem (3.3) – (3.6).

First we deduce some evident properties of the operator�.

Lemma 4.1 The operator� has a bounded inverse ��� such that������� � ��� � (4.3)

The spectrum 8��� of the operator� belongs to the domain

�� � � � Re� � �� � (4.4)

and its eigenvalues � are located in the domain

Re� � � � (4.5)
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P r o o f. The uniform accretiveness (3.53) yields the boundedness of the operator���, the estimate (4.3) and
the fact that points �, Re� � �, belong to the resolvent set &��� of the operator � (see [18, Chap. V.10]). It
remains to be proved that the eigenvalues of the operator � are not located on the line � � � � ,� �� � ��.

Indeed, let � � � � ,� and 	 � ��
 -� � ���� such that �� � ��	 � �. Then � � �
�
�

�
�
�

�
and the definition

(3.52) of the operator� yields the following system of equations:

�
�
�
�

�
�

�
�
� � �5�-

�
� ��� ,��� � �5�

�
�
� � � ,�- � (4.6)

Since �
�
�
� is selfadjoint, we conclude that��� �

�
� �
��� �

�
5�-��

�
�
� �
�

� ��� ,�� ���� �

�
�
�

�
�
� �� 5

�-
�

� �
�
5�

�
�
� �� -

�
�

� ,� �-��� �

The first equality yields��� �
�
� �
��� � � ���� � ������

since we know from the second one that
�
5�-��

�
�
� �
�

is purely imaginary. Since��� �
�
� �
��� �

��� �
��
��� � � ����

we conclude that � �
��� �

��
��� and, therefore, � � �. If � �� �, then the second equation in formula (4.6) yields

- � � and, hence, 	 � ��
 -� � �.
If � � �, then we obtain from the first equation in (4.6) that

� �
�
5�-��

�
�
�

�

�
�
-�5�

�
�
�

�
�

� �-� ��
��

for all 
 � ����
��� � �
�
�

�
�
�

�
. Since the set



��
 � 
 � ����
���

�
coincides with the space"

�
�

� and this set is
dense in " , it follows from the last equality that - � � and again 	 � �.

4.2 General properties of the solutions of the spectral problem

The further investigation is based on the theory of linear operators that are selfadjoint in a Hilbert space with
indefinite metric. Here we recall some results of this theory (see [6], [5]).

The Hilbert space  �  � � � is said to be a Krein space or 9–space if for elements from  an indefinite
scalar product � � � � � is introduced along with the ordinary scalar product �� � ��. The corresponding indefinite
metric is defined by the formula � � � � � �� �9 � � ��, where 9 � *� � *�, *� are orthoprojectors on  �, i.e.,
9 � diag

�
��
���

�
.

Each element 	 �  has a certain sign with respect to the indefinite metric: it is positive (�	� 	� � �), negative
(�	� 	� � �) or neutral (�	� 	� � �). In a Krein space the sign of a subspace and the concept of order are introduced
in a natural way. So, for instance, the subspace !� is said to be nonnegative if �	� 	� � � for all 	 � !�, and it is
said to be maximal nonnegative if it is not a principal part of any other nonnegative subspace.

In the sequel we shall use the following well–known fact: the subspace !� is maximal nonnegative if there
exists a contraction:� �  � 	  � (�:�� � �) such that

!� � �	 � 	� �:�	� � 	� �  
�� � (4.7)

The contraction:� is called the angular operator of the subspace !�.
A positive subspace !� is said to be uniformly positive if it is a Hilbert space with respect to the scalar product

generated by the indefinite metric. This is the case if and only if �:�� � �.
We shall say that a subspace !� belongs to the class ;� if it can be represented as a sum of an uniformly

positive subspace and a finite dimensional neutral one. In particular, !� � ;� if its angular operator:� � ��.
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Nonpositive, maximal nonpositive subspaces and its angular operators, and also uniformly negative subspaces,
subspaces of the class ;�, are introduced in the same way.

If a maximal nonnegative subspace !� and a maximal nonpositive subspace !� are � –orthogonal, i.e.,
�	�� 	�� � � for all 	� � !�, then we say that !� and !� form a dual pair �!��!��. In the sequel, we
shall write �!��!�� � ; if !� � ;�.

Let 0 be a linear densely defined operator acting in the space  . The concepts of the 9–adjoint operator 0 
��,
a 9–symmetric operator

�
0 
 0 
��

�
and a 9–selfadjoint one

�
0 � 0 
��

�
are introduced in the ordinary way. It

follows from the relation 0 
�� � 90 �9 that, in particular, the spectrum of a 9–selfadjoint operator is symmetric
with respect to the real axis.

We say that a continuous 9–selfadjoint operator 0 belongs to the class �"� if there exists at least one dual pair
�!��!�� of subspaces that are invariant with respect to 0 , and each 0–invariant dual pair belongs to the class
;. Let 0 � �"� be a bounded 9–selfadjoint operator in a Krein space  . Let

<� � 
�� ���
��� � ��� � ������� � ;� 0�� 
 ��� �

Assume � � � � 8��0 � and let !��0 � be the root subspace corresponding to �. Then (see [6, Chap. 4 " 2, p.
228, Chap. 3 " 5, Chap. 2 " 6]) !��0 � admits the following decomposition:

!��0 � � !��	� �0 �� ���!��	� �0 � �

where !��	� �0 � is a finite dimensional subspace such that Ker
�
�0 ����

��
	
���
� �� 	



is the isotropic part of Ker �0 �

���, that is,

Ker
�
�0 � ���

��
	
���
� �� 	



� Ker �0 � ��� � �Ker �0 � ����
�� �

!
��	
� �0 � 
 Ker �0 � ��� and !��	� �0 � is a regular subspace. Moreover, !��	� �0 � is a Pontryagin subspace with

index <���.

Theorem 4.2 (See [6].) Let 0 � �"� be a bounded 9–selfadjoint operator in a Krein space  . Then the
nonreal spectrum of 0 consists of a finite number of eigenvalues ��, ��, . . . , ���� 	, ���� 	, and there is only a

finite set of real eigenvalues ��, . . . , ���� 	 such that !���0 �, , � �� $�0 �, contains at least one nonzero neutral
eigenvector. Moreover,

��� 	�
���

��
!���0 � �
�

	

��� 	�
���

��
!��	�� �0 � �

��� 	�
���

<���� � <� �

Definition 4.3 A point � � � is called a critical point of the operator 0 � �"� if its kernel Ker �0 � ��� is
degenerate, i.e., its isotropic part has nonzero elements. 7��0 � denotes the set of critical points of the operator
0 ��"�.

#��0 � denotes the closure of the linear hull of eigenelements of the operator 0 corresponding to the finite
multiple eigenvalues, and #�0 � denotes the closure of the linear hull of root elements, respectively.

Definition 4.4 A basis �	������ of the 9–space� is said to be almost 9–orthonormal if it can be represented
as the union of a finite subset of elements from� and a 9–orthonormal subset, and these subsets are 9–orthogonal
to each other.

Definition 4.5 We say that an operator 0 � �� belongs to class �� if its 7–numbers 7��0 �, i.e., the
eigenvalues of the operator �0 �0 �

�
� , fulfill the following condition

��
���

�7��0 ��� �

��
���

�
��
�
�0 �0 �

�
�

���
� � �

Definition 4.6 A basis �������� 
 � is said to be a Riesz basis if �� � 0.�, where �.������ is an
orthonormal basis in � and 0 , 0�� � !���, i.e., they are linear bounded operators acting in �. Riesz basis is
said to be $–basis (see [38]) if 0 � � � 0�, 0� � ��.
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Theorem 4.7 (Cf. [6, Theorem 4.2.12].) Let 0 � �"� be a bounded 9–selfadjoint operator in a Krein space
 . Assume that its spectrum is countable. Then:

(a) ��
� /#�0 �� � ��
� /#��0 �� � �.
(b) ��
�#�0 �/#��0 �� � �.
(c) #��0 � �  if and only if 7��0 � � � and !��0 � � Ker �0 � ��� for nonreal �’s.
(d) #�0 � �  if and only if the subspaces !��0 � are nondegenerate for all � � 7��0 �.
(e) If #��0 � �  �#�0 � �  , respectively� then there exists an almost 9–orthonormal basis in  , which

consists of eigenvectors �root vectors, respectively� of 0 .
(f) If#��0 � �  then there exists a 9–orthonormal basis in , which consists of eigenvectors of 0 if and only

if the spectrum of 0 is real.
(g) The above mentioned bases can be chosen as $–bases iff 0 has a maximal nonnegative invariant subspace

whose angular operator belongs to the class��.

In the sequel, the space � � ���
��� � " will be considered as the space  with  � �� ���
��� and
 � �� " .

Lemma 4.8 The operator matrix� from (3.49) – (3.52) and its inverse��� are � –selfadjoint operators with

� �� diag ���
���� � (4.8)

where �� and �� denote the identity operators in ���
��� and" � ������ ����, respectively.
The spectrum 8��� of the operator � is symmetrical with respect to the real axis and it is located in the

domain (4.4).

P r o o f. The inverse��� has the following representation

��� �

�
� ��

� �
�

� 5�

� �

��
���� �

� ���0�

	� � �

5�
� �

�
� �

�

�

�
�
� �

�
� �

� �

��
� 5�

�5 ��

	���
�
� �

�
� �

� �

�

�

�
�
� �

�
� �

� �

��
0� ����5�0�

���0�5 ���0�

	�
�
� �

�
� �

� �

�
(4.9)

�

�� �
� �

�
� 0��

� �
�

� �����
� �

�
� 5�0�

���0�5�
� �

�
� ���0�

��
��

�
�
���	
�� �

���	
��

�
���	
�� �

���	
��

�
�

with

0� �
�
� � ���5�5

���
� 0� �

�
� � ���55�

���
�

The � –symmetry of the operators � and ��� is clear from the representations (3.50) and (4.9). The operator
��� is bounded and everywhere defined. Hence it is � –selfadjoint. Therefore its inverse

�
���

���
� � is

also � –selfadjoint. From this it follows that 8��� and 8
�
���

�
are symmetric with respect to the real axis. The

property Re� � � � � for � � 8��� was proved in Lemma 4.1.

The problem (4.2) is equivalent to the problem

���	 � �	 � 	 � � � � � ��� � (4.10)

Lemma 4.9 The spectrum 8��� of the operator� is located on the half–axis � � � with the exception of at
most a finite number of nonreal eigenvalues �counted according to their multiplicities�.
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P r o o f. According to the representation (4.9), the operator matrix��� consists of compact operators����	
�� ,

�
���	
�� and ����	

�� � �
�
�
���	
��


�
and a bounded positive definite operator ����	

�� . In particular, the property

�
���	
�� � �� and H. Langer’s Theorem (see, for instance, [6, Chap. 3 " 5]) yield that the � –selfadjoint operator

��� has a dual invariant pair �!��!��. Let : � :� � ���
��� 	 " be the angular operator of the invariant
subspace !�. Then �:� � � and

!� �

��
�
:�

	
� � � ���
����" � � � ���
���

�
� (4.11)

Since ���	 � !� for any 	 � ��
:�� � !�, we obtain the Riccati equation

�
���	
�� : � ��

���	
�� �:�

���	
�� �:�

���	
�� : (4.12)

for the operator: in the standard way from the representation (4.9).

Since the operator ����	
�� has a bounded inverse, we conclude from (4.12) that : is compact, i.e., : � ��.

Therefore, �!��!�� � ; and � � �"�. Thus the assertion of the Lemma follows from Theorem 4.2 and the
property 8��� 
 �� � � � Re� � ��.

Corollary 4.10 If �:� � �, then the operator � is similar to a selfadjoint one and therefore its spectrum
8��� 
 ������.

In fact, in this case !� is a Hilbert space with respect to the 9–metric � � � � � and its 9–orthogonal complement
!� is a Hilbert space with respect to the �9–metric ��� � ��. Since booth subspaces !� are �–invariant we
have that � is a selfadjoint operator with respect to the scalar product ��� 	�� �� ���� 	�� � ���� 	��, where

� � �� � ��, 	� � 	�, ��, 	� � !�. It remains to observe that the norms ��� ��
�
� and ��� ��

�
�
� are equivalent.

Lemma 4.11 The essential �limiting� spectrum 8�

��� of the operator� coincides with the set ��� � ���.

P r o o f. It is sufficient to show that the spectrum 8�


�
���

�
coincides with the set



���
�
� ���. But this

directly follows from Weyl’s Theorem on compact perturbation. Indeed, since the operators����	
�� ,����	

�� ,����	
�� ,

5 and 5� are compact (see Lemmas 3.4 and 3.13) we conclude from the description (4.9) of the operator ���

that ��� is a compact perturbation of the operator diag
�
�
 �����

�
with essential spectrum ��� �



���
�

.

Theorem 4.12 The problem (4.2) has a countable set of positive eigenvalues


���
��
���

of finite–multiplicity

with the accumulation point � � �� and eigenelements


	��
��
���

, 	�� �
�
��� 
 -��

�
� ���
����" � �, such

that the set of projections


���
��
���

on ���
��� forms a Riesz basis with finite defect in the space ���
���. This
Riesz basis is a $�–basis �with finite defect� in ���
��� for

$� � �/� � (4.13)

P r o o f. Any operator and its inverse have mutually inverse eigenvalues and the same eigenelements; therefore
it is sufficient to verify the existence of a countable set of positive eigenvalues of finite–multiplicity with a unique
accumulation point � � � and with the required properties for the eigenelements for ���. To see this, we
consider the maximal nonnegative subspace !� 
 � introduced in the proof of Lemma 4.9. The subspace !�
is invariant with respect to the operator ��� and the angular operator : � :� corresponds to it (see (4.11),
(4.12)). We prove that the restriction ���

��
	�

of the operator ��� on the subspace !� is a compact operator

acting in !�. Indeed, by (4.9), the operator ���
��
	�

acts on any element 	 � ��
:�� � !� according to the
law

���
��
	�
	 �

���
�
�
���	
�� ��

���	
�� :



��

�
���	
�� ��

���	
�� :



�

��� � (4.14)
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Let *�
��
	�

be the restriction on !� of the orthoprojector *� acting by the law *�	 �� � for all 	 � ��
 -� � �.

Since !� is invariant with respect to the operator���, we obtain from (4.14) that

*�
��
	�
���

��
	�

� *��
��
��
	�

�
�
�
���	
�� ��

���	
�� :



*�
��
	�
� (4.15)

Since the operator *��	� maps the subspace !� homeomorphic onto  � � ���
��� (see, for instance, [5,

p. 37]), we conclude from (4.15) that the operator ���
��
	�

is similar to the operator ����	
�� � �

���	
�� :, strictly

speaking

���
��
	�

�
�
*�
��
	�


���
�
���	
�� ��

���	
�� :



*�
��
	�
� (4.16)

Since the angular operator: is bounded and the operators����	
�� and ����	

�� are compact, the operator����	
�� �

�
���	
�� : is compact. Therefore the operator���

��
	�

is also compact, and !� is a nonnegative invariant subspace

of the class ;�. This fact yields that neutral elements of the subspace !� form a finite–dimensional linear
subspace !��, which is also invariant with respect to the operator ���. Let 8

�
����	�

�
� �'��

�
���. Then the

subspace !� can be represented as a direct sum of two invariant subspaces with respect to ��� in the following
way:

!� � span
�
!�
�
����	�

�
� ' � 8

�
����	��


�
��! �

8
�
����	

�
� 8

�
����	�

�
$ 8
�
����	��



�

Here !�
�
����	�

�
denotes the root subspace of the operator ����	� corresponding to its eigenvalue ' and the

symbol span stands for the linear hull. Since

!�� 
 span
�
!�
�
����	�

�
� ' � 8

�
����	��


�
�

the space ! is a Hilbert space with scalar product induced by the indefinite metric. It has finite codimension

��
 span
�
!�
�
����	�

�
� ' � 8

�
����	��


�
in the subspace !�. Hence there exists a Riesz basis



	��
��
���

, 	�� �
�
��� 
 -��

�
� ���
����" � � consisting

of eigenelements of the operator ����	 in ! which has the same finite codimension in the subspace !�. The
projections ���� �

�
��� onto ���
��� of the basis also form a Riesz basis with the same finite defect in the space

���
��� because the operator *��	� maps !� onto ���
��� homeomorphically.
We now prove that the above–mentioned Riesz basis is a $�–basis for $� � �/�. To this end we consider the

equation (4.12) for the angular operator: � :�. The coefficients����	
�� in the right–hand side of the equation

are compact operators of some Schatten classes ��. Indeed, by (4.9), the operator ����	
�� belongs to the same

class�� as the operator���� , i.e., the operator��� since���� � �������� � ���
�
������

���
. According

to the asymptotic formula (3.22), we know that ��� � �� for $ � $�� � �/	. For the operators ����	
�� and

�
���	
�� we obtain from (4.9) that the corresponding number

$ � $
�
�
���	
��



� $

�
�
���	
��



� $

�
�
� �

�
� 5�



� $

�
��

�
�5�

�
� $

�
5��

�
�

�
�

The equation (3.45) yields $�5� � $
�
���

� �
�

�
� $�5�� � $

� �5� and we conclude $
� �5� � $

� �5�� � � from

the asymptotic formula (3.46). Since $
�
��

�
�

�
� �, the operators ����	

�� and ����	
�� belong to the class �� for

$ � �$�, �/�$� � �/� � �/� � �/�	. Therefore all terms in the right side of the equation (4.12) are operators of

the class�� for $ � �	/�. Since the operator
�
�
���	
��



is bounded,: � :� � �� for $ � �	/�.

Thus, according to the assertion in [6, Chap. 4 "3], the elements


	��
��
���

form a $–basis in the subspace

! for $ � �	/�, and then, according to the assertion [5, p. 55], the projections of the elements


	��
��
���

onto

���
���, i.e., the set


���
��
���

forms a $�–basis in its closed hull for $� � �/�. This proves the Theorem.
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Theorem 4.13 The problem (4.2) has a countable set of positive eigenvalues


���
��
���

, ��� � � � �, of

finite–multiplicity, with single accumulation point � � � and eigenelements


	��
��
���

, 	�� �
�
��� 
 -��

�
�

���
����" � �, such that the set of projections


-��
��
���

onto " � ����� � ���� forms a Riesz basis with
finite defect in the space " . This Riesz basis is a $�–basis �with finite defect� in " for $� � �/�.

P r o o f. The proof is carried out in the same way as that of Theorem 4.12, but here for the maximal nonpositive
subspace !�, which is invariant with respect to the operator ���. For the corresponding angular operator :�
we have:� � :�

� � �� ($ � �	/�), and therefore!� � ;�. Further, instead of relation (4.16) we now obtain

���
��
	�

�
�
*��	�

����
�
���	
�� :� ��

���	
��



*�
��
	�
� (4.17)

Hence, the restriction ����	� of the operator ��� to the subspace !� is similar to the operator ����	
�� :� �

�
���	
�� . Notice that ����	

�� � ��, �:�� � � and, as it is clear from (4.9), the operator����	
�� , has the following

structure:

�
���	
�� � ���

�
� � ���55�

���
�� ���� � !�� � !�� � !��� � �� � (4.18)

Clearly, !�� � !��� and since the operators5 and 5� are compact (see Lemma 3.13) we obtain

!�� � ���
�
� � ���55�

���
� ����

� ���
�
� � ���55�

����
� �

�
� � ���55�

��
� ����

�
� � ���55�

���
55� � �� �

Formula (4.18) yields that we can apply to the operator ����	� the same arguments as to the operator ����	�
in Theorem 4.12. But as a difference to Theorem 4.12 here the sequence of positive eigenvalues



���
��
���

corresponding to a Riesz basis


	��
��
���

in a new subspace ! 
 !�, !� � ! ��!��, has the limit point ��� � �.
The further arguments of the proof can be fully repeated.

As a corollary of Theorems 4.12 and 4.13, we have the following result.

Theorem 4.14 The following assertions for the operator� from problem (4.2) hold:
�Æ. ��
�#���/#����� ��.
	Æ. � � #���, i.e., the closure of the linear hull of the root elements of the operator � coincides with the

whole � � ���
����" .
�Æ. � � #���� iff there are no adjoint elements corresponding to the nonreal eigenvalues � of the operator

�, i.e., !���� � Ker ������. �We recall that the operator� cannot have more than a finite number of nonreal
eigenvalues.�

�Æ. There exists an almost � –orthonormal Riesz basis formed by the root elements of the operator �. If
� � #����, then there exists an almost � –orthonormal Riesz basis formed by the eigenelements of �.

�Æ. If #���� � �, then a � –orthonormal basis in the space � formed by the eigenelements of the operator
� exists iff 8��� 
 �.

�Æ. The above–mentioned bases can be chosen as $–bases for $ � �	/�.

P r o o f. Note that the proof is based on the Theorem 4.7.
�Æ. We know that� is a � –selfadjoint operator of the class �"�, and its spectrum 8��� has two accumulation

points: � � � and ��. Therefore, by assertion (b) of Theorem 4.7, we have assertion �Æ of the theorem.
	Æ. Further, for the operator� the set 7���� � �. Indeed, real points � �� � can be only eigenvalues of finite

multiplicity and therefore have nondegenerated kernels Ker �� � ���, and the point � � � is not an eigenvalue
of the operator � (Lemma 4.1). These facts yield that the set span



!���� � � � 7����

�
� �, i.e., it is a

nondegenerate subspace. According to assertion (d) of Theorem 4.7, the assertion 	Æ of the theorem is valid.
�Æ. Since 7���� � �, the assertion (c) of Theorem 4.7 yields the assertion �Æ.
�Æ – �Æ. These assertions are the assertions (e) and (f ) of Theorem 4.7.
�Æ. As it was shown in the proofs of Theorem 4.12 and Theorem 4.13, the angular operators :� of the

maximal invariant subspaces!� of the operator��� (and of the operator�) belong to the class�� for $ � �	/�.
Therefore, by assertion (g) of Theorem 4.7, assertion �Æ holds.
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4.3 The connection between the solutions of two spectral problems

In this section we prove that the solutions of the spectral problem (4.2) are directly connected with the solutions
of the problem in the form (1.1) for the S. Krein’s pencil.

Theorem 4.15 Let �� be an eigenvalue of the operator� and 	�, 	�, � � �, 	� a chain of eigen– and associated
vectors to it, 	� �

�
�� 
 -�

�
, = � �� %. Then ������ � � � ���, �� � �

�
��� , form a chain of eigen– and associated

vectors to the eigenvalue �� � � �in the sense of M. V. Keldysh � for the S. Krein’s operator pencil

���� �� � � ���� � ����� � �� �5� �5 � �5 � ���
� �

� � (4.19)

Conversely, to each chain ��� ��� � � � � �� of eigen– and associated vectors of the pencil (4.19) to the eigen-
value �� � � there corresponds a chain of root elements 	�� 	�� � � � � 	� of the operator� to the eigenvalue ��,
where

	� �

����
��

�
���

�5 ��
���

��� ���
�������

���� � = � �� % � (4.20)

P r o o f. Let 	� � ���
 -�� be an eigenelement of the operator � to the eigenvalue ��. We conclude from
formula (3.52) that

�
�
�
�

�
�

�
�
� �� �5�-�



� ���� � � �

�5�
�
�
� �� � �-� � ��-� � � �

(4.21)

Lemma 4.1 yields �� �� � and we obtain

-� � ��� ���
��5�

�
�
� �� � ��� ���

������ (4.22)

since 5 � ����
�
� � ���

� �
� . For 	� � ���
 -�� � ���� we know that �� � �

�
�

�
�

�
(see (3.51)) and, hence,

�� � ��
�
��� with �� � ���
���. The equations (4.21) and (4.22) yield

-� � ��� ����� �5�� �

�
�
�
���

�
��� � ��� �����5� �5�� � ���

� �
�

� ��
�
��� � � �

(4.23)

We can rewrite the second equation in (4.23) in the form�
�

�
�
��

� �
����

� �
�

� ��
�
�



����������

� �
�

� ��
�
����������

��5� �5�� � � � (4.24)

Here the operator

0� �� �
�
�
��

� �
� � ��

� �
�

� ��
�
� � ��

� �
�

� ��
�
� � �

�
��

� �
�

� (4.25)

is bounded and has a bounded inverse 0��� � �
�
�
���

�
� . Further,

5� �5�� � 5����
� �

��� � 5����
� �

��� � �
� �

�
� � �5�� �

since, by Lemma 3.13, we have ����
�
��� � "

�
�

� � ���� for any �� � ���
���. Applying the operator 0���

to both sides of the equation (4.24), we obtain

���� � ���� ��
�
� � ��� � ���

�� � ��� � ��
���

�
�� � � (4.26)
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since

0��� ��� � ��
��5� �5.� � ��� � ��

���
�
�
��

� �
��

� �
�

� � �5.�
� ��� � ��

����
�
�� �5.�

� ��� � ��
��
�
����

�
�

�� �5.�
� ��� � ��

�� �5� �5.� �
The formula (4.26) shows that the element �� � ��

�
��� is an eigenvector of the S. Krein’s pencil (4.19) for the

eigenvalue �� � �. It is not difficult to check that from the problem (4.26) we can return to the problem (4.21).
Similar arguments can be applied for the associated vectors of the problem (4.2). Let 	� be the %–th associated

element of the operator� for the eigenvalue ��. Then we have the system of equations

�	� � ��	� � � �

�	� � ��	� � 	� � � �

� � � � � � � � � � � � � � � � � � � � � � � �

�	� � ��	� � 	��� � � �

(4.27)

The last equation (4.27) is equivalent to the system

�
�
�
�

�
�

�
�
� �� �5�-�



� ���� � ���� � � �

�5�
�
�
� �� � �-� � ��-� � -��� � � �

(4.28)

From the second equation we conclude that

-� � ��� ���
������� � -���� � (4.29)

After the substitutions

�� � ��
�
��� � = � �� % � (4.30)

in system (4.28), taking into account the corresponding relations for = � % and the first equality (4.23), we can
deduce by induction from (4.29) that

-� � �5� ��
���

��� ���
�������

�
� = � �� % � (4.31)

Further, in the first equation (4.28) we use the same transformations which were applied above under the transition
from the equation (4.21) to (4.26). By (4.31), as a final result we shall have the equation�

�� � ��� � �����.� � ��� � �������
�
�
�
�������� � ��� � ���������

�
� �

����
���

��� ���
������� � � �

(4.32)

which can be rewritten for the pencil ���� in the form

���� � ���� � �
��� � ������ �

��
���

�=�������	��� � ������ � � � (4.33)

It follows that the elements ������ � � � ��� form a chain of eigen– and associated elements (in M. V.
Keldysh’s sense) of the operator pencil ���� for � � �� � �. These arguments can be reversed, i.e., we can
return from (4.33) to the problem (4.27). The formulae (4.20) follow from (4.30) and (4.31).
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Theorem 4.14 and Theorem 4.15 yield the following assertion.

Theorem 4.16 For the operator� the following properties are valid.
�� The nonreal eigenvalues of the operator � and those real ones to which there correspond associated

elements are located in the segment

� ��
�
� � � � Re�� � �

�
	 �����

���
� ��� �� � 	 ���

�
(4.34)

of the complex domain � . To this finite set of eigenvalues there correspond neutral eigenelements of the operator
�.

Conversely, eigenvalues corresponding to neutral eigenelements of the operator� are situated in the segment
� and, additionally, the operator� has associated elements for such real eigenvalues.

	� The eigenvalues ��� corresponding to positive eigenelements from the nonnegative invariant subspace !�
are situated on the interval ���	������. Respectively, the eigenvalues ��� corresponding to negative eigenele-
ments from the nonpositive invariant subspace !� are situated on the interval

�
�� �� �	 ��������

�
.

�� If the operators � and � fulfill the condition

�
������� ��� � � � (4.35)

then the operator� has no neutral eigenelements and, hence, no nonreal eigenvalues and associated vectors. In
this case the union of normalized eigenelements



	��
��
���


 !� and


	��
��
���


 !� form a � –orthonormal
basis in the space� � ���
����" .

�� For the eigenvalues ��� and ��� the two–side estimates

������ 	 ��� � ��� � � � ������ (4.36)

����� � ��� � � � �����/
�
�� 	����� �����

�
(4.37)

are fulfilled for % � � and the asymptotic formulas
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hold.

P r o o f. 1) Let �� be a nonreal eigenvalue of the operator � and 	� � ���
 -�� be a corresponding eigenele-
ment. Then, by Theorem 4.15, the element �� � ��

�
� �� is an eigenelement of the operator ���� � �� (see

(4.26)) and, therefore

��� � ��
�
�
��������

�
� ��� � ��������� � �������� � � � (4.40)

Since �� � � is nonreal, the inequality
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�
��������

�
�������� � � (4.41)

holds and we conclude for the root �� � � of the quadratic equation (4.40) that
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Therefore,

��� � �� � 	 ��� � (4.42)

Further, from the same equation we obtain

Re�� � � � Re ��� � �� �
�������

	����������
�
�
	
���������� � (4.43)

Let now �� be a real eigenvalue to which an eigenelement 	� and an associated element 	� correspond. Then,
by Theorem 4.15, the eigenelement�� has an associated element �� (see (4.30)), i.e., the equations�

� � ��� � ����� � ��� � �����
�
�� � � ��

� � ��� � ����� � ��� � �����
�
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�
��� � ��� � �����

�
��

(4.44)

hold. Hence, we obtain the equation (4.40) and the relation�
��������

�
� ��� � ��

���������� � � � (4.45)

since

����� � ��.�� .�� � �.�� ���� � ��.�� � �.���� � � �

Then

�������
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	��������

�������

and, therefore�
	
���������� � �� � � � ��� � �� � 	 ��� �

i.e., the inequalities (4.34) are valid for real eigenvalues �� with an associated vector.
To prove the converse we first remark the well–known fact that to nonreal eigenvalues of a

� –selfadjoint operator� there correspond neutral eigenelements. If an eigenelement 	� corresponds to an eigen-
value �� � � and has an associated element 	�, then the relation (4.45) holds and therefore

�� 	�� 	��� �
�
��������

�
� ��� � ��

���������� � � � (4.46)

i.e., 	� is a neutral element.
Assume that 	� is a neutral eigenelement for the eigenvalue ��. If �� �� ��, then the inequalities (4.42) and

(4.43) hold and hence �� � � . If �� � �, then it is sufficient to deduce that the second equation (4.44) has a
nontrivial solution ��. Since the operator ��� � ����� � ��� � ����� is compact and selfadjoint, the assertion
is valid iff the right side of (4.44) is orthogonal to the solution of the homogeneous equation, i.e., to �� �� �.
Since 	� is a neutral element, it fulfills the condition (4.46) and we obtain that there exists a solution �� �� � of
the second equation of (4.44). Hence, 	� is an associated vector to the eigenelement 	�.

2) Let �� be a positive eigenvalue of the operator � corresponding to a positive eigenelement 	� from the
invariant nonnegative subspace !�. Then

� � �� 	�� 	��� �
�
��������

�
� ��� � ��

���������� (4.47)

and the inequality, which is opposite to (4.41), holds. Since ���� � � we conclude by using formula (4.40) that
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Therefore,

�� � � �
�������

	
�
��������

� � �
	
���������� � (4.48)

It was proved above, that on the interval
�
� � �	 ��������� � � 	 ���

�
there are only eigenvalues to which

neutral eigenelements correspond. Since the element

	� �
�
��

�
���
 ��� � ��

�� �5��

�
is positive by assumption, we conclude that �� � ��� 	 �������.

The proof of the second assertion in 2) for eigenvalues��� that correspond to negative eigenelements 	�� � !�,
is carried out in the same way using the inequality

�.�� .��� 	��� � ��
����.�� .�� � ��� � ��

��
���.�� .�

�
� ������

����.�� .��
�
� � �

3) The condition (4.35) yields that the segment � � �. Hence, the operator � has no nonreal eigenvalues
and each of its eigenelements is definite and therefore has no associated elements. Then the invariant subspaces
!� and !� are uniformly definite, and the basis, which is formed by the eigenelements of the operator �, is a
� –orthonormal one in the space� � ���
����" (see Theorem 4.14, assertion 5).

4) The estimates (4.36) and (4.37) for the operator pencil (4.19) were deduced in [23, p. 300]. The asymptotic
formulas (4.38) and (4.39) follow from the asymptotic formulas (3.22), (3.46) and the estimates (4.36), (4.37).

4.4 Fourier series

Return to the Cauchy problem (3.55) – (3.57) to which the initial boundary value problem (3.3) – (3.6) on small
motions of a viscous fluid was reduced. If the condition (4.35) is valid, then the operator� has a � –orthonormal
basis formed from eigenelements
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This allows us to obtain the solution 	��� of the problem (3.55) in the form of a Fourier series.
Represent 	��� in the form

	��� �
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���

>�� ���	�� �

��
���

>�� ���	�� � (4.50)

Using the formulae (4.49), we obtain the system of Cauchy problems:
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From this we obtain the formulae for the unknown functions >�� ��� and >�� ��� and, hence, also the formula for
	��� and for the solution�
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(see (3.38)). The solution has the form�
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(4.51)

Here each term on the right side has a clear physical sense: the function ����� describes the free motions of a
viscous fluid connected with interior dissipative waves (rapidly damped aperiodic motions); the function �����
describes the free motions connected with surface waves (slowly damped aperiodic motions); the function �����
gives us the solution of the problem (for zero initial data) due to effect of external forces (forced motions).
The solution (4.51) also allows us to extract terms which depend on the initial velocity field �� or the initial
displacement +� of the free fluid surface.

4.5 Final remarks

In conclusion of the paper we mention some facts connected directly with the problem.
1. Remember that the initial physical problem contains the parameters ' � � (the viscosity of the fluid) and

( � � (the gravity acceleration). In Subsection 3.4 and further we supposed these parameters to be equal to
1. Returning to the initial notations, we must write '� instead of � in all formulas and change � to (

�
��. In

particular, the condition (4.35) then has the form

�(
������� ��� � '� (4.52)

where � �
�
���

� �
�

���
���

� �
�

�
. We conclude that the operator� has only real eigenvalues for sufficient large

viscosity ' and, in this case, its eigenelements form a � –orthogonal basis in the space �. It can be proved (see,
for instance, [23, p. 205]), that in this case

��� � ��� ?���� � ��� � ��� �� ?��

for % � � where

?� �
' %

�
'� � �( ����� ���

��
�

	 �����
� � � ?� � ?� �

For the branches ��� and ��� the two–side estimates

'����� � 	('����� � ��� � � � '����� (4.53)

and

('������� � ��� � � � ('�������/
�
�� 	('�������

�������� (4.54)

hold for all % � �. According to (3.22) and (3.46) these branches have the following asymptotic behaviour
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and

��� � �� ('�������
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�
� � 3���

�
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We note that there correspond so–called interior dissipative waves in the viscous fluid to the branch of eigen-
values



���
�

, % � �, and so–called surface gravitational waves to the branch of eigenvalues


���
�

, % � �. Their
properties were described in Chapter 7 of the monograph [23].

2. It is necessary to take into account physical dimensions of the unknown and known variables under the
mathematical consideration of the physical problems. If we introduce typical values for these variables or pa-
rameters we use the opportunity to pass to undimensional variables and to consider the initial boundary value
problem (3.3) – (3.6) already in undimensional variables. This allows us to use formulae of the form

�	��� � ���� � �-���

and we do not need to calculate the physical dimensions of the terms.

3. The change of the spectral parameter � � ��� �� ���� was done with the transformation of the problem
(4.2) to the problem (4.10). It is evident that under such a change both spectral problems

�
for the operators �

and ���
�

have the same eigenelements. But it is not true for associated elements. It can be shown that the
associated vectors for the problems (4.2) and (4.10) are connected by a triangle transformation (see, for instance,
[23, p. 73]). Let, for example, �� be an eigenvalue and 	�� 	�� � � � � 	� a corresponding chain of an eigenelement
and associated vectors of the operator�. Define �	� � 	� and

�	� � �����
�

����������������

��� � �� � � � �� ���� 	������������

��� ��� � � � �� ��
������������	��
�

� % � � � (4.57)

In particular,
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�
�

Then �	�� �	�� � � � � �	� form a chain of an eigenelement and eigenvectors to the eigenvalue�� � ��
�� of the operator

��� (and vice versa).

4. The approach applied in this paper and based on the theory of operator matrices with unbounded entries
can be used also in more complicated hydrodynamic problems than the classical S. Krein problem. In particular,
it can be applied to the problem on small motions of a viscous fluid which uniformly rotates in a partially filled
container. The fluid can be either a heavy one (ordinary conditions) or a capillary one (conditions of weightless-
ness).

Let a heavy viscous fluid uniformly rotate with a constant angular velocity @� � @��� in a partially filled
container. Then its free surface � is a rotation paraboloid and the equilibrium pressure is equal to

*���� � $� � &(�� �
�

	
&@��

�
��� � ���

�
� (4.58)

The equations describing the small oscillations near the uniform rotation of the fluid are similar to those in (3.3) –
(3.6), but need the following variations (see [23, p. 313]). In the first equation (3.3) we must add the Coriolis
term �	@�� � �� (on the left). Further, in condition (3.5) the ordinary partial derivatives must be changed to
corresponding covariant derivatives (in local curvilinear coordinate systems in some vicinity of the free surface
�), and the term &(+ in the right side of the last condition (3.5) must be changed by the term *��

�
�A
�
*�+. Here

*� is an orthoprojection onto " � ����� � ����, �A �� �A�� A�� a point on � and �
�
�A
�

�� ��*���� � ���� a
known function which is continuous and positive on �.

If we repeat the scheme of the transition from the initial boundary value problem to the system of operator
equations (see Subsections 3.2, 3.3), we obtain the system

��

��
� 	,@�!�� '������+ � 
��
 �

�+

��
� ��� � � � ���� � �� � +��� � +� �

(4.59)
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instead of the problem (3.27.) Here !� �� ,*��
������, ! � !�, �!� � �, and�� �� *��
�
�A
�
*� is a bounded

selfadjoint positive definite operator acting in the space " .

Using the substitution - �� �
�
�
� + and applying the operator �

�
�
� to both sides of the second equation of the

system (4.59) we obtain the problem

��

��
� 	,@�!�� '�����
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�
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�-

��
��
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�
� �
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�
�
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(4.60)

The corresponding operator matrix

��� ��

�� '�� 	,@�! ��
�
�
�

��
�
�
� �

� �

�� (4.61)

is a generalization of the operator �� from (3.35). The operator ��� is also accretive and the closure �� of the
operator ��� �� ��� � ��, � � �, is maximal uniformly accretive. This property allows us to investigate the
problem (4.59), to prove the existence of a unique strong solution and to study the spectral properties of the
operator ��.
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