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1. Introduction

Auxiliary abstract boundary-value problems generated by conjugation problems are considered.
Conjugation problems are problems in which interrelations between unknown functions defined in
adjoining domains are given only through the boundaries of these domains.

1.1. On the abstract operator approach to conjugation problems. The papers of Agranovich
and others (see [3–5]) and his lectures at the annual Crimean Autumnal Mathematical School (Laspy–
Batiliman) have become the initial boost for the authors.

Conjugation problems containing a spectral parameter on the boundary of conjugation μ and a
fixed parameter λ ∈ C in the equations were studied in these papers. Moreover, the first domain is
fixed and the second domain is a complement to the whole space. In addition, conditions of emission
or decay of a solution at infinity are imposed.

Such problems arise in the diffraction theory (see [4]), where the second domain can be bounded;
then the Dirichlet condition or any homogeneous condition is imposed. Note that the case where
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the spectral parameter of the equations is λ ∈ C and the fixed parameter at the boundary of the
conjugation of the domains is μ ∈ C was also discussed in [4].

The main method used in [4, 5], where μ is a spectral parameter, is the reduction of the problem
to an integral operator equation for functions given at the boundary of the conjugation. Here the
parameter λ was included in the kernels of the corresponding integral operators. This can make the
study of such operators difficult.

In [52] and other papers of this author (see [53–55]), another method is used. It allows one to study
a problem with fixed λ and the spectral parameter μ and an inverse variant simultaneously. Here the
method of bilinear forms connected to the problem and of corresponding operators and equipotential
technique based on introducing the operators of auxiliary boundary-value problems are used.

The method of operators of auxiliary problems was, seemingly, first used by S. G. Krein. In
particular, in monographs [28, 29, 31], it was used for the reduction of the initial-value problem
to a spectral problem for a operator sheaf (i.e., an operator-value function depending on a spectral
parameter) acting on some Hilbert space.

The present paper considers the abstract auxiliary boundary-value problems that generalize similar
conjugation problems. We assume that there are several adjoining domains and the condition of
conjugation is imposed on the parts of the general boundaries of these domains. Such problems are
quite frequent. Here the corresponding generalizations of diffraction problems, the Stefan spectral
problem with the Gibbs–Thompson condition, and the Krein problem about the normal oscillations
of a heavy viscous liquid in an open container are considered in detail. The same method can be used
for the problem of motion of dynamical systems where the energy dissipates at the surface.

1.2. On the history of the abstract Green formula. Let Ω be an arbitrary domain in R
m with

a boundary Γ := ∂Ω. We know that the Green formula
∫

Ω

η(u−Δu) dΩ =

∫

Ω

[∇η · ∇u+ ηu] dΩ−
∫

Γ

η
∂u

∂n
dΓ, Δu :=

m∑
k=1

∂2u

∂x2k
(1.1)

is valid for a twice continuously differentiable function u = u(x), x ∈ Ω, a continuously differentiable
function η = η(x), and a sufficiently smooth boundary Γ = ∂Ω. We can rewrite this formula in the
following form:

(η, Lu)L2(Ω) = (η, u)H1(Ω) −
(
γη,

∂u

∂n

)
L2(Γ)

, (1.2)

Lu := u−Δu, γη := η
∣∣
Γ
. (1.3)

Here γ is a trace operator, ∂/∂n is an outward normal to Γ derivative, and L2(Ω), H
1(Ω), and L2(Γ)

are the standard functional Hilbert spaces with the corresponding norms.
The Green formula (1.2) (the first Green formula for the Laplace operator) can be generalized in

several ways. First, we can take abstract Hilbert spaces E, F , and G that satisfy some connection
conditions instead of concrete Hilbert spaces L2(Ω), H

1(Ω), and L2(Γ). Second, in formula (1.2),
instead of the inner product in the first and last terms, we can take their continuous extensions that
are functionals (see below). Third, in (1.2) the boundary Γ = ∂Ω can be Lipschitzian.

The following facts are valid.

Theorem 1.1. Let the following conditions for the triplet of abstract Hilbert spaces {E, (·, ·)E},
{F, (·, ·)F }, and {G, (·, ·)G} with inner products and for an operator γ, which is further called the
trace operator, hold (see [25, 30]):

1◦. The space F is embedded continuously and compactly in the space E (the notation is F ⊂→E),
i.e., F is compact in E and there exists a constant a > 0 such that

‖u‖E ≤ a‖u‖F ∀u ∈ F. (1.4)
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2◦. The trace operator γ is bounded and acts from F onto the space G+ ⊂→ G and

‖γu‖G ≤ b‖u‖F ∀u ∈ F, b > 0. (1.5)

Then there exist operators L : F → F ∗ and ∂ : F → (G+)
∗ uniquely defined by E, F , and G (with the

inner products) and γ such that the following abstract Green formula holds:

〈η, Lu〉E = (η, u)F − 〈γη, ∂u〉G ∀η, u ∈ F. (1.6)

Here the values of the functionals Lu ∈ F ∗ and ∂u ∈ (G+)
∗ on the elements η ∈ F and γη ∈ G+

respectively are denoted by the oblique diagonal braces.
If the conditions

E = L2(Ω), F = H1(Ω), G = L2(Γ), Γ = ∂Ω, γη := η
∣∣
Γ

(1.7)

hold, then the following fact (see, e.g., [25]) follows from the Gagliardo theorem (see [18]) and Sec. 2.2.

Theorem 1.2. The following Green formula holds for the domain Ω ⊂ R
m with the Lipschitz boundary

Γ = ∂Ω:

〈η, Lu〉L2(Ω) = (η, u)H1(Ω) −
〈
γη,

∂u

∂n

〉
L2(Γ)

∀η, u ∈ H1(Ω), (1.8)

Lu := u−Δu ∈ (H1(Ω))∗,
∂u

∂n

∣∣∣
Γ
∈ (H1/2(Γ))∗ = H−1/2(Γ). (1.9)

Hence, the Green formula (1.8) generalizes formulas (1.1) and (1.2) for the less smooth functions
and the Lipschitz boundary Γ = ∂Ω.

Theorems 1.1 and 1.2 will be actively used below and will be generalized to the case of conjuga-
tion problems, where the unknown functions given at different domains satisfy some conditions of
conjugation for the parts of the boundaries of adjoining domains.

Let us say some words about the history of abstract Green formulas. In [31], it was assumed that
ker γ =: N is compact in E and the following formula was obtained:

(η, Lu)E = (η, u)F − (γη, ∂u)G ∀η ∈ F, ∀u ∈ D(L) ⊂ F ⊂ E. (1.10)

S. Krein thought that he was the first who proved it (see [31, p. 119]). Along with formula (1.10), the
abstract scheme of the study of boundary-value problems was obtained (see [31, Sec. 1.3]).

The property N = E is well known for the triple of spaces (1.7) as H1
0 (Ω) = ker γ = N is dense in

L2(Ω) = E.
The further strengthening of the Green abstract formula (1.10) can be found in [25, 30]. In partic-

ular, the condition
N = E (1.11)

was removed in [25]. It was ascertained later that the Green abstract formula had been proved by
Oben (see [46, Chap. 6] and the reference to the original paper of 1970). However, we see bilinear
F -coercive form instead of the inner product (see (1.10)) there and E contains the actual range of the
abstract differential expression L. Moreover, conditions (1.11), 1◦, and 2◦ and Theorem 1.1 were used.

Finally, the abstract Green formula in the form of Oben but without the reference to [46] was used
in the monograph of Showalter (see [50]). Note that the abstract Green formula in slightly different
form (according to the second Green formula for the Laplace operator) is given in [40, p. 58].

1.3. On the results of the paper. Let us present the main results of this paper. In Sec. 2, we
obtain the sufficient conditions (see Lemmas 2.1 and 2.2) for the Green formula to have the following
form:

〈η, Lu〉E = (η, u)F −
q∑

k=1

〈γkη, ∂ku〉G ∀η, u ∈ F, (1.12)

where γk is an abstract trace operator to the part of the boundary of the domain and ∂k is an abstract
analog of the outward normal derivative. It is proved (Theorem 2.2) that this formula is valid for
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a domain Ω ⊂ R
m with a Lipschitz boundary ∂Ω (see (2.51)). In Sec. 2.3, the multicomponent

conjugation problems in diffraction theory and their abstract analogs are formulated.
In Sec. 3, the auxiliary abstract boundary-value problems (problems of S. G. Krein) and the oper-

ators of such problems are studied. These problems can be easily formulated by using the abstract
Green formula for multicomponent conjugation problems (see (3.29), (3.31)–(3.33), and (3.35)) and
the representation theorem for any element of the space of solutions (Theorem 3.3).

In Sec. 4, the main equations arising in applications are derived. For the spectral Stefan problem,
we obtain the equation in the following form (see (4.12)):

η = λ (Aη + Bη) , (1.13)

where A is a compact positive operator and B is a compact nonnegative operator, which are generated
by the first and second auxiliary abstract boundary-value problems. The following spectral problem
arises for the problems of the diffraction theory:

η + λAη − μBη = 0, (1.14)

where either λ or μ is a spectral parameter and the other is fixed. The following equation arises in
problems of the type of S. G. Krein:

η = λAη + λ−1Bη. (1.15)

The general properties of operator coefficients A and B are the same. The problem of a bounded
self-adjoint operator (see Sec. 4.4) is reduced to the problem (see (4.62))

ξ = λA−1ξ − λ−1Bξ, 0 < A−1 ∈ S∞, 0 ≤ B ∈ S∞. (1.16)

The spectral problem of motion of dynamical systems, where the energy dissipates at the surface,
leads to the following equation:

η − λβBη + λ2Aη = 0, β > 0, (1.17)

where the coefficients are the same as in (1.13)–(1.15).
The general properties of every problem (1.13)–(1.16) are given in Sec. 4 as theorems and lemmas.
The authors dedicate this paper to the memory of the eminent mathematician and outstanding

human being L. R. Volevich.

2. The Abstract Green Formula for Conjugation Problems

In this section, the abstract Green formula is derived for the triple of Hilbert spaces, where it
is easy to study mixed boundary-value problems when different conditions are imposed on different
parts of boundary of the domain (e.g., Dirichlet, Neumann, and Newton or other homogeneous or
nonhomogeneous conditions).

The general discussion is illustrated by a classic example for the domain Ω in R
m with Lipschitz

boundary ∂Ω. The conjugation problem arising in the diffraction theory and its abstract analog are
formulated.

2.1. The general Green formula for mixed boundary-value problems. If the boundary Γ
of the domain Ω ⊂ R

m consists of two parts, namely, Γ = Γ1 ∪ Γ2 and Γ2 = Γ \ Γ1, then in the classic
case, i.e., for the smooth Γ = ∂Ω and smooth functions η and u, we can rewrite formula (1.2) in the
following form:

(η, u−Δu)L2(Ω) = (η, u)H1(Ω) −
2∑

k=1

(γkη, ∂ku)L2(Γk)
,

γkη := η
∣∣
Γk
, ∂ku :=

∂u

∂n

∣∣∣
Γk

, k = 1, 2.
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It is useful for studying of mixed boundary-value problems where, e.g., the Dirichlet boundary condi-
tion is imposed on one part Γ = ∂Ω of the boundary and another boundary condition (e.g., Neumann
or Newton conditions) is imposed on the other part.

Now we derive a similar Green formula in an abstract form based on formula (1.6) and the con-
structions from [46, p. 191-192] (see also [27]).

Let the conditions of Theorem 1.1 hold. Let p1 be a continuous operator at G+ and p2 := I − p1.

Then the operators pk, k = 1, 2, are continuous from G+ to (G̃+)k := pkG+. Let us introduce the
operators

γ̃k := pkγ, ∂̃k := p∗k∂, and p∗k := (G̃+)
∗
k → (G+)

∗, k = 1, 2. (2.1)

Lemma 2.1. The Green formula holds with the above assumptions:

〈η, Lu〉E = (η, u)F −
2∑

k=1

〈γ̃kη, ∂̃ku〉G ∀η, u ∈ F. (2.2)

Proof. The proof is quite simple. By construction,

γ = (p1 + p2)γ = γ̃1 + γ̃2

and it follows that

〈γη, ∂u〉G = 〈(γ̃1 + γ̃2)η, ∂u〉G = 〈γ̃1η, ∂u〉G + 〈γ̃2η, ∂u〉G

=
2∑

k=1

〈pkγη, ∂u〉G =
2∑

k=1

〈p2kγη, ∂u〉G =
2∑

k=1

〈pkγη, p∗k∂u〉G =
2∑

k=1

〈γ̃kη, ∂̃ku〉G. (2.3)

Remark 2.1. It follows from the proof of Lemma 2.1 that if there are several complementary projec-
tors, for example, their amount is equal to q, i.e.,

pk = p2k : G+ → (G̃+)k := pkG+, k = 1, . . . , q,

q∑
k=1

pk = I, (2.4)

then at the right-hand part of (2.2), the summation with respect to k is from k = 1 to k = q.

Introduce the notation 1, q := 1, . . . , q.
In problems of mathematical physics (see Sec. 2.2), the operators pk can have the following structure:

pk = ωkρk, k = 1, q, (2.5)

where
ρk : G+ → (G+)k (2.6)

is the operator of reducing the space (G+)k = ρkG+ (the operators of reducing to a part of the
boundary of the domain). Here

G =

q⊕
k=1

Gk, (G+)k ⊂→Gk (2.7)

and ωk : (G+)k → (G̃+)k is the operator of “reducing by zero” from (G+)k to the subspace (G̃+)k ⊂
G+ (from a part of the boundary to the whole boundary), i.e.,

ωk(G+)k = ωkρkG+ = pkG+ = (G̃+)k. (2.8)

Moreover, it is assumed in (2.5) that ωk is the right inverse operator for ρk, i.e.,

ρkωk = Ik (in (G+)k), k = 1, q, (2.9)

and the operators ρk and ωk are continuous from G+ onto (G+)k and from (G+)k onto (G̃+)k, respec-
tively.
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Lemma 2.2. If the formulated above conditions hold, then the Green formula (2.2) (taking into ac-
count Remark 2.1) has the following form:

〈η, Lu〉E = (η, u)F −
q∑

k=1

〈γkη, ∂ku〉Gk
∀η, u ∈ F, (2.10)

γkη := ρkγη, ∂ku := ω∗
k∂u, (2.11)

where γk is an abstract trace operator to a part of the boundary of the domain and ∂k is an abstract
operator of a outward normal derivative that acts on a part of the boundary of the domain.

Proof. Converting the expression under the summation sign in (2.2) according to conditions (2.5)–(2.9)
and taking into account (2.3), we have

〈γ̃kη, ∂̃ku〉G = 〈pkγη, ∂u〉G = 〈ωkρkγη, ∂u〉G.
We see that the right-hand side is a bounded linear functional with respect of ρkγη = γkη ∈ (G+)k,
as ωk is continuous and

|〈ωkρkγη, ∂u〉G| ≤ ‖ωk‖ · ‖ρkγη‖(G+)k · ‖∂u‖(G+)∗ .

Therefore, this functional in the “inner product Gk” has the following form:

〈ωkρkγη, ∂u〉G = 〈ρkγη, ω∗
k∂u〉Gk

=: 〈γkη, ∂ku〉Gk
.

We use this notation for ∂k because in the smooth classic case (for the boundary of the domain and
the function u), the outward normal derivative arises at a part of the boundary.

2.2. A classic example. Let us prove the statements of Lemmas 2.1 and 2.2 for the triple of
spaces (1.7), i.e., for the elements of H1(Ω),Ω ⊂ R

m, at the domain Ω with a Lipschitz boundary.
Let us recall that a bounded domain Ω ⊂ R

m has a Lipschitz boundary Γ = ∂Ω if there is a
neighborhood of every boundary point and an orthogonal coordinate system for this neighborhood
0y1 . . . ym such that the equation of the part of the boundary ∂Ω in this neighborhood has the following
form: ym = f(y1, . . . , ym−1), where f is a Lipschitz function

|f(y1, . . . , ym−1)− f(z1, . . . , zm−1)| ≤ C

(
m−1∑
k=1

|yk − zk|2
)1/2

.

Let us introduce a functional space H1(Ω) with a standard norm in the domain Ω:

‖u‖2H1(Ω) :=

∫

Ω

(|∇u|2 + |u|2) dΩ, |∇u|2 =
m∑
k=1

∣∣∣ ∂u
∂xk

∣∣∣2

and its subspace, which is the kernel of the operator γ:

H1
0 (Ω) := ker γ =

{
u ∈ H1(Ω) : γu = u|Γ = 0

}
. (2.12)

As is known, the set

H1
h(Ω) :=

{
u ∈ H1(Ω) : u−Δu = 0 (in Ω)

}
(2.13)

is an orthogonal complement to H1
0 (Ω) at H

1(Ω). This set is called a subspace of harmonic functions.
Thus, we have an orthogonal decomposition

H1(Ω) = H1
0 (Ω)⊕H1

h(Ω). (2.14)

The next statement (see [18]) is very important.
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Theorem 2.1 (E. Gagliardo). Let a bounded domain Ω ⊂ R
m have a Lipschitz boundary Γ = ∂Ω.

Introduce the Hilbert space H1/2(Γ) with the following squared norm at this boundary:

‖ϕ‖2
H1/2(Γ)

:=

∫

Γ

|ϕ|2 dΓ +

∫

Γx

dΓx

∫

Γy

dΓy
|ϕ(x)− ϕ(y)|2
|x− y|m+1

. (2.15)

Then the operator γ defined as
γu := u

∣∣
Γ

∀u ∈ H1(Ω)

is bounded from H1(Ω) in H1/2(Γ), i.e., the following estimate holds:

‖γu‖H1/2(Γ) ≤ c1‖u‖H1(Ω) ∀u ∈ H1(Ω). (2.16)

Conversely, for every function ϕ ∈ H1/2(Γ), there is a function u ∈ H1(Ω) (which is ambiguously
defined by ϕ) such that

γu = ϕ, ‖u‖H1(Ω) ≤ c2‖ϕ‖H1/2(Γ). (2.17)

In this case, the space H1/2(Γ) is embedded compactly in L2(Γ).

To derive the Green formula for mixed boundary-value problems, we select simple open parts with
Lipschitz boundaries ∂Γk at the surface Γ = ∂Ω of the domain Ω. It is sufficient for the applications
that ∂Γk are piecewise smooth with nonzero interior and exterior angles. We have

Γ =

(
q⋃

k=1

Γk

)
∪
(

q⋃
k=1

∂Γk

)
, mesΓk > 0, mes ∂Γk = 0, k = 1, q. (2.18)

Let us introduce the operator ρk of restriction from Γ to Γk:

ρkϕ := ϕ
∣∣
Γk

∀ϕ ∈ H1/2(Γ). (2.19)

This operator maps every function ϕ ∈ H1/2(Γ) to its part ϕk, which is given on Γk ⊂ Γ.

Lemma 2.3. The operator of restriction

ρk : H
1/2(Γ) → H1/2(Γk), k = 1, q, (2.20)

is bounded and has the following norm:

‖ρk‖H1/2(Γ)→H1/2(Γk)
≤ 1. (2.21)

Proof. Statements (2.20) and (2.21) follow from definition (2.15) of the space norm H1/2(Γ) since

‖ϕ‖2
H1/2(Γk)

≤ ‖ϕ‖2
H1/2(Γ)

, Γk ⊂ Γ ∀ϕ ∈ H1/2(Γ).

Let us introduce the subspaces

H1
0,Γ\Γk

(Ω) :=
{
u ∈ H1(Ω) : u = 0 on Γ \ Γk

}
, k = 1, q. (2.22)

Since
H1

0,Γ\Γk
(Ω) ⊃ H1

0 (Ω) ∀k = 1, q,

we have that H1
0,Γ\Γk

(Ω) is dense at L2(Ω) for every k = 1, q.

It is natural for problems of mathematical physics for the elements u ∈ H1(Ω) to accept that

∂u

∂n

∣∣∣
Γk

∈ H−1/2(Γk), k = 1, q. (2.23)

The collection of such sets of derivatives at the parts Γk of the boundary Γ = ∂Ω is wider than the

collection of normal derivatives
∂u

∂n

∣∣∣
Γ
, u ∈ H1(Ω) as in (2.23) these finite-ordered generalized functions
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defined at Γk cannot present a generalized function
∂u

∂n

∣∣∣
Γ
∈ H−1/2(Γ) which is composed from them.

Therefore, the collection of trial functions given at Γ can be narrower than H1/2(Γ). Consequently,
the Green formula (2.10) is valid for some subset of the space H1(Ω) (see Theorem 1.2) in mixed
boundary-value problems with conditions (2.23).

Note that we take the space H−1/2(Γk) of elements with the norm

‖ψ‖H−1/2(Γk)
:= inf

̂ψ|Γk
=ψ

‖ψ̂‖H−1/2(Γ) (2.24)

in (2.23) as H−1/2(Γk) (see, e.g., [2, formula 5 and the end of Sec. 4]). The next statement (see [2, 49]

and [47, Theorem 2.1]) is valid for elements from H−1/2(Γk) with Lipschitz boundary ∂Γk: there is

a linear operator E of extension of functions from H−1/2(Γk) from Γk onto the whole Γ by functions

from H−1/2(Γ) and

‖Eψ‖H−1/2(Γ) ≤ c‖ψ‖H−1/2(Γk)
∀ψ ∈ H−1/2(Γk). (2.25)

Note that this operator E was introduced by Rychkov (see [2, 49]), and it has a unique property: it
is bounded from the space Hs

p(Ω) to the space Hs
p(R

m) and from Hs
p(Γk) to Hs

p(Γ) and it does not
depend on the indices s and p, |s| ≤ 1, 1 < p <∞.

Using these facts, let us consider the sesquilinear form

[ϕ, ψ]Γ := 〈ϕ, Eψ〉L2(Γ) ∀ϕ ∈ H1/2(Γ) ∀ψ ∈ H−1/2(Γk). (2.26)

Here Eψ ∈ H−1/2(Γ) = (H1/2(Γ))∗ (the conjugation is with respect to the form L2(Γ)). The following
estimate is valid for this form by virtue of (2.25):

|[ϕ, ψ]Γ| ≤ ‖ϕ‖H1/2(Γ) · ‖E‖ · ‖ψ‖H−1/2(Γk)
. (2.27)

Now let ϕ = γη and η ∈ H1
0,Γ\Γk

(Ω). Then γη ∈ H1/2(Γ) and γη = 0 at Γ \ Γk. Let us consider

a sequence {ψj}∞j=1 of elements from L2(Γk) converging to the element ψ ∈ H−1/2(Γk) by the norm

H−1/2(Γk) (such a sequence exists since L2(Γk) is dense at H−1/2(Γk)). By virtue of (2.26) and the
fact that E : L2(Γk) → L2(Γ) is a bounded operator, we have for a fixed ϕ:

〈ϕ, Eψ〉L2(Γ) = lim
j→∞

〈ϕ, Eψj〉L2(Γ) = lim
j→∞

(ϕ, Eψj)L2(Γ) = lim
j→∞

(ρkϕ, ψj)L2(Γk) =: 〈ρkϕ, ψ〉L2(Γk), (2.28)

where ρk : H1/2(Γ) → H1/2(Γk) is an operator of restriction from Lemma 2.3, and on the right-
hand side, we have an extension of an inner product at L2(Γk) to elements ρkϕ = ρkγη =: γkη,

η ∈ H1
0,Γ\Γk

(Ω) and ψ ∈ H−1/2(Γk) (with respect to L2(Γk)).

Note that for a fixed ϕ, the right-hand side in (2.28) does not depend on the type of extension of the

element ψ ∈ H−1/2(Γk) to the element ψ̂ ∈ H−1/2(Γ), since the values (ρkϕ, ψj)L2(Γk) are determined

by the elements ψj , given at Γk. Therefore, the limit expression depends only on ψ, instead of ψ̂.
Using these facts, let us consider the following auxiliary mixed boundary-value problem:

u−Δu = 0 (in Ω), u = 0 (on Γ \ Γk), ∂u

∂n

∣∣∣
Γk

= ψk (on Γk). (2.29)

A function u ∈ H1
0,Γ\Γk

(Ω) for which the following equality is valid for every η ∈ H1
0,Γ\Γk

(Ω):

(η, u)H1(Ω) = (γkη, ψk)L2(Γk), γk := ρkγ, ψk ∈ L2(Γk) (2.30)

is called a general solution of problem (2.29).
A function u ∈ H1

0,Γ\Γk
(Ω) for which the equality

(η, u)H1(Ω) = 〈γkη, ψk〉L2(Γk), ψk ∈ H−1/2(Γk) (2.31)
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is valid for every η ∈ H1
0,Γ\Γk

(Ω) is called a weak solution of problem (2.29). The right-hand side here is

the value of the functional ψk ∈ H−1/2(Γk) on the element γkη = ρkγη, η ∈ H1
0,Γ\Γk

(Ω). (It is obvious

that the classic and general solutions of problem (2.29) are weak in the sense of definition (2.31).)

Lemma 2.4. For every ψk ∈ H−1/2(Γk), there is a unique weak solution of problem (2.29) and

u ∈ H1
0,Γ\Γk

(Ω) ∩H1
h(Ω) =:Mk(Ω) ⊂ H1

h(Ω). (2.32)

Proof. The proof is based on the fact that for every η ∈ H1
0,Γ\Γk

(Ω), the right-hand side in (2.31) is a

bounded linear functional H1
0,Γ\Γk

(Ω). In fact, taking into account relations (2.28), (2.26), and (2.27),

and Theorem 2.1 (see inequalities (2.16)), we have

|〈γkη, ψk〉L2(Γk)| = |〈ρkγη, ψk〉L2(Γk)| = |〈γη, Eψ〉L2(Γ)| ≤
≤ ‖γη‖H1/2(Γ) · ‖E‖ · ‖ψ‖H−1/2(Γk)

≤
(
c1‖E‖ · ‖ψ‖H−1/2(Γk)

)
‖η‖H1

0,Γ\Γk
(Ω).

Therefore, there exists a unique element u =: Tkψk ∈ H1
0,Γ\Γk

(Ω) such that Eq. (2.31) is valid. If we

set in (2.31) η ∈ H1
0 (Ω), then we have (η, u)H1(Ω) = 0 and, by virtue of (2.14), we see u ∈ H1

h(Ω).
Property (2.32) follows from here.

Lemma 2.4 implies that the operator Tk acts from H−1/2(Γk) to Mk(Ω). If we set in (2.31) η ∈
Mk(Ω), then we have the equality

(η, Tkψk)H1(Ω) = 〈γ0kη, ψk〉L2(Γk) ∀η ∈Mk(Ω), ψk ∈ H−1/2(Γk), (2.33)

where

γ0k := γk
∣∣
Mk(Ω)

= (ρkγ)
∣∣
Mk(Ω)

. (2.34)

It is obvious from the construction that elements of the type γ0ku for all u ∈Mk(Ω) have the following

properties. First, they belong to the space H1/2(Γk) (see Theorem 2.1 and Lemma 2.3). Second, being

extended by zero from Γk to the whole Γ, they belong to H1/2(Γ). Moreover, it is obvious that there
is a one-to-one correspondence between the elements u from Mk(Ω) and the collection of elements of
the type γ0ku. Indeed, if u ∈Mk(Ω) and γ

0
ku = 0, then γu = 0 on ∂Ω and hence u = 0. (On the other

hand, if u ≡ 0, then γ0ku = 0.)

Let us denote by H̃1/2(Γk) the collection of elements of the form

H̃1/2(Γk) := {γ0ku : u ∈Mk(Ω)} ⊂ H1/2(Γk). (2.35)

Lemma 2.5. The set H̃1/2(Γk) is dense in L2(Γk).

Proof. Assume that there exists an element ϕ0 ∈ L2(Γk) that is orthogonal to all the elements from

H̃1/2(Γk), i.e.,

(γ0kη, ϕ0)L2(Γk) = 0 ∀η ∈Mk(Ω).

Then, by virtue of (2.12), this property is valid for any η ∈ H1
0,Γ\Γk

(Ω). Therefore, from (2.31), taking

into consideration the equality

〈γ0kη, ϕ0〉L2(Γk) = (γ0kη, ϕ0)L2(Γk),

we have

(η, Tkϕ0)H1(Ω) = 0 ∀η ∈ H1
0,Γ\Γk

(Ω).

Consequently, Tkϕ0 = 0, and ϕ0 = 0.
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Let us consider the operator

Ck := γ0kTk : H
−1/2(Γk) → H̃1/2(Γk). (2.36)

According to the construction, there is a one-to-one correspondence between D(Ck) = H−1/2(Γk)

and its value area R(Ck) = H̃1/2(Γk). Taking into account this fact and the fact that there is an

isomorphism between Mk(Ω) and H̃1/2(Γk), we introduce the Hilbert-space structure on H̃1/2(Γk).
Here

(α, β)
˜H1/2(Γk)

:= (η, u)H1(Ω), η, u ∈Mk(Ω), γ
0
kη = α, γ0ku = β. (2.37)

Then from (2.33) it follows that as η ∈ Tkψ̃k, ψ̃k ∈ H−1/2(Γk), the following equality holds:

(Tkψ̃k, Tkψk)H1(Ω) = 〈Ckψ̃k, ψk〉L2(Γk), ψ̃k, ψk ∈ H−1/2(Γk). (2.38)

Taking into account definition (2.37), we can rewrite this relation in the following form:

(α, β)
˜H1/2(Γk)

= (η, u)H1(Ω) = 〈α,C−1
k β〉L2(Γk) ∀α, β ∈ H̃1/2(Γk), (2.39)

η = Tkψ̃k, γ
0
kη = α, u = Tkψk, γ

0
kTkψk = Ckψk = β, ψk = C−1

k β, ψ̃k, ψk ∈ H−1/2(Γk). (2.40)

Before we formulate the following statements, let us recall the notion of a Hilbert pair of spaces
and corresponding properties (see, e.g., [31, pp. 32–47] and [37, p. 251]).

We say that Hilbert spaces F and E (with the inner products (·, ·)F and (·, ·)E respectively) form
a Hilbert pair (F ;E) if condition (1.4) is valid, i.e., F is continuous and densely embedded in E and
there exists an a > 0 such that

‖u‖E ≤ a‖u‖F ∀u ∈ F.

Using the pair (F ;E), we can form a noncontinuous self-adjoint operator A (an operator of a Hilbert

pair) such that F = D(A1/2), D(A) ⊂ F . It can be determine by the following equality:

(u, v)F = (u,Av)E , u ∈ F, v ∈ D(A) ⊂ F.

Using the operator A, we can form a Hilbert spaces scale Eα, α ∈ R, such that E0 = E, E1/2 =
F, E−1/2 = F ∗ (with respect to the form of E), and the operator A is considered to act in this scale.
In this case,

AE1/2 = AF = E−1/2 = F ∗, A1/2F = E0 = E, A1/2E0 = F ∗;
Moreover, the triple of spaces

F ⊂→E ⊂→F ∗

forms an equipment of the Hilbert space E. Then the operator A of the Hilbert pair (F ;E), given on
D(A) = F , can be determined from the following equality:

(u, v)F = (A1/2u,A1/2v)E = 〈u,Av〉E ∀u, v ∈ F = E1/2, (2.41)

where 〈u,Av〉E is the value of the bounded linear functional Av ∈ F ∗ on the element u ∈ F .

Lemma 2.6. The operator C−1
k = (γ0kTk)

−1 with D(C−1
k ) = H̃1/2(Γk) and R(C−1

k ) = D(Ck) =

H−1/2(Γk) is the operator of a Hilbert pair (H̃1/2(Γk);L2(Γk)).

Proof. Recall that H̃1/2(Γk) is dense in L2(Γk) (Lemma 2.5) and, by construction, it is a complete

space with respect to the norm induced by the inner product (2.37). Since H̃1/2(Γk) ⊂ H1/2(Γk), by
virtue of Lemma 2.3 and relations (2.15), (2.16), and (2.37), we have

‖ϕ‖L2(Γk) ≤ ‖ϕ‖H1/2(Γk)
≤ ‖ϕ̂‖H1/2(Γ) ≤ c1‖u‖Mk(Ω) = c1‖ϕ‖ ˜H1/2(Γk)

, (2.42)

ϕ = γ0ku, u ∈Mk(Ω), ϕ ∈ H̃1/2(Γk),

where ϕ̂ is the function ϕ ∈ H̃1/2(Γk) extended by zero on Γ \ Γk and now defined on the whole Γ.
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Hence, H̃1/2(Γk) and L2(Γk) form a Hilbert pair of spaces (H̃1/2(Γk);L2(Γk)). By definition (2.41),
for the operator A of this pair, the following equality should holds:

(α, β)
˜H1/2(Γk)

= 〈α,Aβ〉L2(Γk) ∀α, β ∈ H̃1/2(Γk).

Comparing this equality with (2.39), we conclude that A = C−1
k : H̃1/2(Γk) → H−1/2(Γk) is the

operator of the Hilbert pair (H̃1/2(Γk);L2(Γk)).

It follows from this lemma that the triple of spaces

H̃1/2(Γk) ⊂ L2(Γk) ⊂ H−1/2(Γk) (2.43)

forms an equipment of the space L2(Γk).

Note that the norm in H̃1/2(Γk) introduced by formula (2.37) is “stronger” than the standard norm

in H1/2(Γk). Indeed, this fact follows from (2.42):

‖ϕ‖H1/2(Γk)
≤ c1‖ϕ‖ ˜H1/2(Γk)

∀ϕ ∈ H̃1/2(Γk). (2.44)

Introduce the operator ωk of extension by zero on Γ\Γk on elements from H̃1/2(Γk) acting according
to the following rule:

ωkϕk :=

{
ϕk on Γk,

0, on Γ \ Γk ∀ϕk ∈ H̃1/2(Γk).
(2.45)

Lemma 2.7. An operator of extension by zero from Γk to Γ, which is considered on D(ωk) :=

H̃1/2(Γk), is a continuous operator acting from H̃1/2(Γk) onto H
1/2(Γ), so that

‖ωkϕk‖H1/2(Γ) ≤ c1‖ϕk‖ ˜H1/2(Γk)
, (2.46)

where c1 is the constant from inequality (2.16).

Proof. This statement has already been proved in the proof of Lemma 2.6. Indeed, by virtue of (2.45),
we have in (2.42) that ϕ̂ = ωkϕk. Formula (2.46) follows from this.

Remark 2.2. As is known (see, e.g., [41, p. 78] and [57, pp. 116]), even for the smooth Γ the operator

of extension by zero from some part of Γk to the whole Γ is not continuous from H1/2(Γk) to H
1/2(Γ).

Nevertheless, this operator is bounded for a given problem on the solutions of auxiliary problem (2.29),
i.e., on the elements γ0ku, u ∈Mk(Ω).

Let us introduce the following classes of functions:

H̃1(Ω) := H1
0 (Ω)⊕ ((�)mk=1Mk(Ω)) , Mk(Ω) = H1

h(Ω) ∩H1
0,Γ\Γk

(Ω), (2.47)

H̃1/2(Γ) :=
{
ϕ ∈ H1/2(Γ) : ρkϕ ∈ H̃1/2(Γk), k = 1, q

}
. (2.48)

Definition 2.1. A trace γu of the element u ∈ H1(Ω) is called regular with respect to a decomposition

Γ = ∂Ω into parts Γk, k = 1, q (see (2.18)), if for any k = 1, q the element γku = ρkγu ∈ H̃1/2(Γk),

i.e., it can be extended by zero to the whole Γ in the class H1/2(Γ).

According the constructions and definition (2.47) and (2.48), we see that the elements from H̃1(Ω)

have a regular trace, i.e., for any u ∈ H̃1(Ω) we have

u = u0 + u1 + . . . uq, u0 ∈ H1
0 (Ω), uk ∈Mk(Ω), k = 1, q, (2.49)

γu0 = 0, γkuk = γ0kuk = ϕk ∈ H̃1/2(Γk), γkuj = 0 (k �= j), j, k = 1, q.

In this case, the elements γu ∈ H̃1/2(Γ) have restrictions at Γk and can be extended by zero to the

whole Γ in the class H1/2(Γ).
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Let us consider the following triple of spaces and the trace operator

E = L2(Ω), F = H̃1(Ω), G = L2(Γ), γu := u
∣∣
Γ
, u ∈ H̃1(Ω). (2.50)

The following properties are valid.

1◦. H̃1(Ω) is dense in L2(Ω) (H̃
1(Ω) ⊃ H1

0 (Ω)) and

‖u‖L2(Ω) ≤ c‖u‖H1(Ω) = c‖u‖
˜H1(Ω)

∀u ∈ H̃1(Ω).

2◦. The operator γ : H̃1(Ω) → H̃1/2(Γ) is bounded, H̃1/2(Γ) is dense in L2(Γ), and (according to
the Sobolev trace theorem)

‖γu‖L2(Γ) ≤ c̃‖u‖H1(Ω) ∀u ∈ H̃1(Ω).

3◦. By virtue of Lemmas 2.3 and 2.7, for every k = 1, q, the operator pk = ωkρk is bounded in the

space G+ := H̃1/2(Γ), p2k = pk and ρkωk is the identity operator in H̃1/2(Γk) by construction.

According to Lemma 2.2 we can conclude the following.

Theorem 2.2. The following Green formula takes place for the triple of spaces L2(Ω), H̃
1(Ω), L2(Γ)

(where Γ = ∂Ω) and the trace operator γ : H̃1(Ω) → L2(Γ) (γη := η
∣∣
Γ
, η ∈ H̃1(Ω)) in the domain

Ω ⊂ R
m with a Lipschitz boundary Γ:

〈η, u−Δu〉L2(Ω) = (η, u)H1(Ω) −
q∑

k=1

〈γkη, ∂ku〉L2(Γk) ∀η, u ∈ H̃1(Ω), (2.51)

Γ =

(
q⋃

k=1

Γk

)
∪
(

q⋃
k=1

∂Γk

)
, mes(Γk ∩ Γj) = 0 (k �= j), Δu ∈ (H1(Ω))∗,

γkη := η
∣∣
Γk

∈ H̃1/2(Γk), ∂ku :=
∂u

∂n

∣∣∣
Γk

∈ H−1/2(Γk), k = 1, q.

Note that the Green formula in the form (2.51) for mixed boundary-value problems can be proved
with help of constructions from [31, pp. 46] and [30] and Eqs. (2.47)–(2.49) instead of the general
approach of Sec. 2.1.

2.3. Multicomponent conjugation problems. We start with the case of conjugation problems
for the Helmholz equation (see [5, 52, 56]).

Consider q bounded domains Ωj , j = 1, q, with Lipschitz boundaries Γj = ∂Ωj in R
m (m ≥ 2).

These domains are adjoint by some parts of their boundaries. Moreover, some parts of boundaries can
be free, i.e., they do not border neighboring domains.

Let us denote by Γjj , j = 1, q free (external) parts of boundaries Γj . We denote by Γjk the part of
the boundary Γj that adjoins a part of the boundary of the domain Ωk (k �= j). We see that Γjk = Γkj .
We have the matrix of boundaries

(Γjk)
q
j,k=1 .

We consider its elements as an (m− 1)-dimensional manifold with a border.
Let us formulate the statement of a multicomponent conjugation problem for the given collection

of domains Ωj and j = 1, q.
It is required to find functions uj(x) ∈ H1(Ωj), j = 1, q, such that the following Helmholtz equations

are valid in Ωj :

uj −Δuj + λajuj = 0 (in Ωj), j = 1, q, (2.52)

where λ ∈ C is a parameter and aj ∈ L (H1(Ωj), (H
1(Ωj))

∗) are bounded linear operators that are
positive definite, i.e.,

〈uj , ajuj〉L2(Ωj) ≥ cj‖uj‖2L2(Ωj)
, cj > 0, j = 1, q. (2.53)
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Boundary conditions of conjugation problems at adjoining and free boundaries can be classified as
follows. Let us divide Γjk into nonintersecting parts Γjkl, l = 1, 4, and set four types of conditions of
conjugation as k > j at the boundary Γjk.

1◦. The conditions of the first conjugation problem with a parameter are the following:

γjk1uj = γkj1uk,
∂uj
∂njk1

+
∂uk
∂nkj1

+ δjk1γjk1uj = μαjk1γjk1uj (on Γjk1), (2.54)

where μ ∈ C is the parameter and the trace operators are denoted by γjkl, l = 1, 4, i.e.,

γjkluj := uj
∣∣
Γjkl

, j = 1, q, k > j, l = 1, 4, (2.55)

and ∂/∂njkl is the symbol of an outward normal derivative. The bounded operators acting from

H1/2(Γjkl) to H−1/2(Γjkl) are denoted in (2.54) and further by αjkl and δjkl, l = 1, 4. The
operators αjkl are positive definite and the operators δjkl are nonnegative:

〈γjkluj , αjklγjkluj〉L2(Γjkl) ≥ cjkl‖γjkluj‖2L2(Γjkl)
, cjkl > 0; (2.56)

〈γjkluj , δjklγjkluj〉L2(Γjkl) ≥ 0. (2.57)

2◦. The conditions of the first conjugation problem without parameters:

γjk2uj = γkj2uk,
∂uj
∂njk2

+
∂uk
∂nkj2

+ δjk2γjk2uj = 0 (on Γjk2). (2.58)

3◦.
∂uj
∂njk3

= − ∂uk
∂nkj3

= −δjk3(γjk3uj − γkj3uk) + μαjk3(γjk3uj − γkj3uk) (on Γjk3). (2.59)

4◦. The conditions of the second conjugation problem without parameters:

∂uj
∂njk4

= − ∂uk
∂nkj4

= −δjk4(γjk4uj − γkj4uk) (on Γjk4). (2.60)

Let us formulate three types of boundary conditions on free (external) boundaries.

1◦. The Newton–Neumann condition with a parameter:

∂uj
∂njj1

+ δjj1γjj1uj = μαjj1γjj1uj (on Γjj1). (2.61)

2◦. The Newton–Neumann condition without parameters:

∂uj
∂njj2

+ δjj2γjj2uj = 0 (on Γjj2). (2.62)

3◦. The Dirichlet condition:

γjj3uj = 0 (on Γjj3). (2.63)

Here the operators αjjl and δjjl, l = 1, 2, have the same general properties (see (2.56) and (2.57))
as above, i.e., as k > j.

Note that in multicomponent problem (2.52)–(2.63), one of the parameters, i.e., λ or μ, is fixed
and the other is spectral (see [52]). Moreover, we can impose any other homogeneous conditions of
conjugation on adjoining parts of boundary and on free boundaries. In particular, if there are no
conditions in the problem under consideration, then we can accept that the measure of corresponding
parts of the boundary is zero.

Let us give the statement of an abstract multicomponent problem which bears on the abstract
Green formula (2.10) for mixed boundary-value problems.
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Consider the set of spaces Ej , Fj , and Gj and trace operators γj , j = 1, q, such that, for every set,
the conditions of Theorem 1.1 hold and hence for every jth set, there are q abstract Green formulas
of type (1.6):

〈ηj , Ljuj〉Ej = (ηj , uj)Fj − 〈γjηj , ∂juj〉Gj ∀ηj , uj ∈ Fj , j = 1, q. (2.64)

Let Lemma 2.2 hold for any set of jth spaces.
As in the above-mentioned example, we accept the following:

1◦. The following direct decompositions take place:

(G+)j =

q∑
k=1

(+̇)(G+)jk, j = 1, q, (2.65)

(G+)jk =
∑
l

(+̇)(G+)jkl, l = 1, 4 (k > j), l = 1, 3 (k = j), (2.66)

where we denote by (G+)jkl the image of the corresponding operator γjkl given on Fj (see
below).

2◦. Every space from the decomposition (2.65) and (2.66) has an equipment, i.e.,

(G+)jkl ⊂→Gjkl ⊂→(G+)
∗
jkl ∀j, k, l. (2.67)

3◦. Equipments (2.67) are equal after we move indices j and k, i.e.,

(G+)jkl = (G+)kjl, Gjkl = Gkjl, (G+)
∗
jkl = (G+)

∗
kjl. (2.68)

Let ρjkl : (G+)j → (G+)jkl be the restriction operators (from (G+)j to the space (G+)jkl.) Their

properties are the same as in Lemma 2.2. Let ωjkl : (G+)jkl → (G̃+)jkl be the corresponding operators

of extension by zero (from (G+)jkl to (G̃+)jkl ⊂ (G+)j .)
Then

γjkl := ρjklγj : Fj → (G+)jkl, ∂jkl := ω∗
jkl∂j : Fj → (G+)

∗
jkl (2.69)

are the corresponding bounded abstract trace operators (to a part of the boundary) and normal
derivative operators defined at a part of the boundary.

Taking into account our notation, we formulate a statement on an abstract conjugation problem.
It is required to find a set of elements {uj}qj=1, uj ∈ Fj such that the following equations are satisfied:

Ljuj + λajuj = 0, j = 1, q, (2.70)

where λ ∈ C is a parameter and aj ∈ L
(
Fj , F

∗
j

)
are linear, bounded, positive-definite operators:

〈uj , ajuj〉Ej ≥ cj‖uj‖2Ej
, cj > 0, j = 1, q. (2.71)

The solutions of Eqs. (2.70) must satisfy the following abstract boundary conditions.
We have for k > j (see (2.54)–(2.60)):

1◦. The conditions of the first conjugation problem with a parameter:

γjk1uj = γkj1uk, ∂jk1uj + ∂kj1uk + δjk1γjk1uj = μαjk1γjk1. (2.72)

Here and below, αjkl and δjkl, l = 1, 4, are the operators from L
(
(G+)jkl, (G+)

∗
jkl

)
with

properties that have the form of (2.56), (2.57), i.e.,

〈γjkluj , αjklγjkluj〉Gjkl
≥ cjkl‖γjkluj‖2Gjkl

, cjkl > 0, (2.73)

〈γjkluj , δjklγjkluj〉Gjkl
≥ 0. (2.74)

2◦. The conditions of the first conjugation problem without parameters:

γjk2uj = γkj2uk, ∂jk2uj + ∂kj2uk + δjk2γjk2uj = 0. (2.75)
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3◦. The conditions of the second conjugation problem with a parameter:

∂jk3uj = −∂kj3uk = −δjk3(γjk3uj − γkj3uk) + μαjk3(γjk3uj − γkj3uk). (2.76)

4◦. The conditions of the second conjugation problem without parameters:

∂jk4uj = −∂kj4uk = −δjk4(γjk4uj − γkj4uk). (2.77)

We have three types of conditions as k = j (the analog of (2.61)–(2.63)).

1◦. The Newton–Neumann condition with a parameter:

∂jj1uj + δjj1γjj1uj = μαjj1γjj1uj . (2.78)

2◦. The Newton–Neumann condition without parameters:

∂jj2uj + δjj2γjj2uj = 0. (2.79)

3◦. The Dirichlet condition:

γjj3uj = 0. (2.80)

As above (for k > j), the operators αjjl and δjjl, l = 1, 2 are positive definite and nonnegative
(see (2.73) and (2.74)).

We will study problem (2.70)–(2.80) with help of abstract Green formulas for the set of jth spaces,
j = 1, q.

Let us write the Green formulas (2.64) taking into account properties (2.65)–(2.68) and Lemma 2.2.
We have

〈ηj , Ljuj〉Ej = (ηj , uj)Fj −
∑
k>j

4∑
l=1

{〈γjklηj , ∂jkluj〉Gjkl
+ 〈γkjlηk, ∂kjluk〉Gjkl

}

−
3∑
l=1

〈γjjlηj , ∂jjluj〉Gjjl
∀ηj , uj ∈ Fj . (2.81)

Summing the left-hand sides and right-hand sides over j from 1 to q, we obtain the Green formula

q∑
j=1

〈ηj , Ljuj〉Ej =

q∑
j=1

(ηj , uj)Fj −
q∑
j=1

∑
k>j

4∑
l=1

{〈γjklηj , ∂jkluj〉Gjkl

+ 〈γkjlηk, ∂kjluk〉Gjkl

}−
q∑
j=1

3∑
l=1

〈γjjlηj , ∂jjluj〉Gjjl
, (2.82)

η := (η1, . . . , ηq), u := (u1, . . . , uq) ∈ F :=

q⊕
j=1

Fj . (2.83)

3. Auxiliary Abstract Boundary-Value Problems and Representations of Solutions

Abstract boundary-value problems generated by problem (2.70)–(2.80) and operators of these
boundary-value problems are studied with help of the Green formula (2.82). Two of such problems
sometimes called auxiliary problems of S. G. Krein, will be considered. They are used in self-adjoint
and non self-adjoint problems of mathematical physics, in particular, in hydrodynamics and theory of
elasticity (see, e.g., [31, Secs. 7-8].)
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3.1. Preliminary transformations. Let us consider a priori properties of problem (2.70)–(2.80).
We can divide boundary conditions (2.72)–(2.80) into two classes as is customary for the calculus of
variations. Let us refer so-called main boundary conditions to the first class. They are the first in
relations (2.72) and (2.75), and conditions (2.80). Refer natural boundary conditions to the second
class; here they are the rest in (2.72)–(2.80).

Let us consider in the space

F =

q⊕
j=1

Fj , (η, u)F :=

q∑
j=1

(ηj , uj)Fj , η, u ∈ F, (3.1)

the collection V of sets u = (u1, . . . , uq) that satisfy the following boundary conditions:

V :=
{
u = (u1, . . . , uq) ∈ F : γjk1uj = γkj1uk, γjk2uj = γkj2uk (k > j); γjj3uj = 0, j = 1, q

}
. (3.2)

Since all of the operators γjkl : Fj → (G+)jkl are bounded, we have that V is a subset of the set F .
The further constructions are based on the following assumption. As a rule, it is satisfied in problems

of mathematical physics. Let every subset Nj := ker γj be dense in Ej , i.e.,

Nj = Ej , j = 1, q. (3.3)

For example, if j = 1 and F = H1(Ω), E = L2(Ω), γ is a trace operator at Γ = ∂Ω, Ω ⊂ R
m, then

N := ker γ = H1
0 (Ω), H1

0 (Ω) = L2(Ω). (3.4)

Lemma 3.1. The following orthogonal decomposition holds:

F = V ⊕ V ⊥, (3.5)

V ⊥ :=
{
u = (u1, . . . , uq) ∈ F : Ljuj = 0, ∂jjluj = 0, l = 1, 2,

∂jkluj + ∂kjluk = 0, k > j, l = 1, 4, j = 1, q
}
. (3.6)

Proof. Let η := (η1, . . . , ηq) ∈ V , and u ∈ F be orthogonal to η with respect to the inner product in
the space F . Then, according to formulas (2.82) and (3.2) we have

q∑
j=1

〈ηj , Ljuj〉Ej +

q∑
j=1

∑
k>j

4∑
l=1

〈γjklηj , ∂jkluj + ∂kjluk〉Gjkl
+

q∑
j=1

2∑
l=1

〈γjjlηj , ∂jjluj〉Gjjl
= 0. (3.7)

Setting here η = (η1, 0, . . . , 0), η1 ∈ N1, we see, taking into account property (3.3), that L1u1 = 0.
Similarly, we obtain that

Ljuj = 0, j = 1, q. (3.8)

Then the first sum in (3.7) is equal to zero.
If all γjklηj = 0 (k > j), then the second sum in (3.7) is equal to zero, and as the collection of

elements {γjjlηj}ηj∈Fj
covers all the space (G+)jjl, we obtain the following conditions:

∂jjluj = 0, j = 1, q, l = 1, 2. (3.9)

It follows from (3.7) that the second sum in (3.7) is equal to zero.
Finally, using the fact that {γjklηj}ηj∈Fj

covers all (G+)jkl, we obtain that

∂jkluj + ∂kjluk = 0, k > j, j = 1, q, l = 1, 4. (3.10)

The statement of the lemma follows from here.

It follows from Lemma 3.1 that the subset V ⊥ from (3.5) consists of those sets of harmonic elements
(see (3.8)) that satisfy boundary conditions (3.9) and (3.10).

To illustrate decomposition (3.5) let us consider a simple example. Let us have at the plane R
2

three domains Ω1, Ω2 and Ω3, having Lipschitz boundaries Γ1, Γ2 and Γ3, respectively. Let them be
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adjoint by parts of these boundaries Γ12 = Γ21, Γ13 = Γ31, Γ23 = Γ32 and have free parts Γ11, Γ22

and Γ33, respectively.
Let us introduce spaces H1(Ω1), H1(Ω2) and H1(Ω3) having standard norms and spaces

L2(Ω1), L2(Ω2) and L2(Ω3). Let us form the space F :=
3⊕
j=1

H1(Ωj) and introduce its subspace

V of elements u = (u1;u2;u3) of the following form (see (3.2)):

V :=
{
u = (u1, u2, u3) ∈ F : u1 = u2 (at Γ12), u2 = u3 (at Γ23),

u1 = u3 (at Γ13), u1 = 0 (at Γ11), u2 = 0 (at Γ22), u3 = 0 (at Γ33)
}
.

Then by virtue of Lemma 3.1 we have orthogonal decomposition (3.5) where

V ⊥ :=
{
u = (u1, u2, u3) ∈ F : uj −Δuj = 0 (in Ωj), j = 1, 2, 3,

∂u1
∂n12

+
∂u1
∂n21

= 0 (on Γ12),
∂u2
∂n23

+
∂u3
∂n31

= 0 (on Γ23),
∂u3
∂n31

+
∂u1
∂n13

= 0 (on Γ13)
}
.

Here �nij is an external inward normal to Ωj , Ωj , j = 1, 2, 3.
Let us use the Green formula for the elements from V . It can be derived from (2.82) and boundary

conditions (3.2). We have

q∑
j=1

〈ηj , Ljuj〉Ej =

q∑
j=1

(ηj , uj)Fj −
q∑
j=1

∑
k>j

2∑
l=1

〈γjklηj , ∂jkluj + ∂kjluk〉Gjkl

−
q∑
j=1

∑
k>j

4∑
l=3

{〈γjklηj , ∂jkluj〉Gjkl
+ 〈γkjlηk, ∂kjluk〉Gjkl

}−
q∑
j=1

2∑
l=1

〈γjjlηj , ∂jjluj〉Gjjl
. (3.11)

Let us extract the following subspace of V :

N :=

q⊕
j=1

Nj ⊂ V ⊂ F ⊂ E :=

q⊕
j=1

Ej . (3.12)

By virtue of (3.3) we have properties of density

N = V = E. (3.13)

Lemma 3.2. The following orthogonal decomposition takes place in the inner product of the space F :

V = N ⊕N⊥, (3.14)

N⊥ :=
{
u = (u1, . . . , uq) ∈ V : Ljuj = 0, j = 1, q

}
. (3.15)

Proof. It follows directly from formulas (3.11) and (3.3) taking into account the fact that for elements
from N every γjkluj = 0.
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Let u = (u1, . . . , uq) ∈ V be a solution of problem (2.70)–(2.80). Then for every η ∈ V we have the
following equation using the Green formula (3.11):

(η, u)V :=

q∑
j=1

(ηj , uj)Fj +

q∑
j=1

∑
k>j

2∑
l=1

〈γjklηj , δjklγjkluj〉Gjkl

+

q∑
j=1

∑
k>j

4∑
l=3

〈(γjklηj − γkjlηk), δjkl(γjkluj − γkjluk)〉Gjkl
+

q∑
j=1

2∑
l=1

〈γjjlηj , δjjlγjjluj〉Gjjl

= −λ
q∑
j=1

〈ηj , ajuj〉Ej + μ
{ q∑
j=1

∑
k>j

[〈γjk1ηj , αjk1γjk1uj〉Gjk1

+ 〈(γjk3ηj − γkj3ηk), αjk3(γjk3uj − γkj3uk)〉Gjk3

]

+

q∑
j=1

〈γjj1ηj , αjj1γjj1uj〉Gjj1

}
=: −λΦ1(η, u) + μΦ2(η, u). (3.16)

3.2. The first auxiliary boundary-value problem. Let us introduce in the space V the inner
product defined by the left-hand side of (3.16) and the corresponding norm.

Lemma 3.3. The norms defined by the inner products (3.1) and (3.16) are equivalent.

Proof. Since all the operators δjkl, l = 1, 4, are nonnegative, we see that ‖η‖V ≥ ‖η‖F for every
η ∈ V . Besides, as the operators γjkl are bounded from Fj to (G+)jkl, and δjkl is bounded from
(G+)jkl to (G+)

∗
jkl we have that the corresponding sums of quadratic functionals of the expression

(η, η)V (see (3.16)) can be estimated by the value c‖η‖2F , c > 0. Therefore,

‖η‖F ≤ ‖η‖V ≤ (1 + c)1/2‖η‖F . (3.17)

Using these facts let us consider the first auxiliary boundary-value problem generated by prob-
lem (2.70)–(2.80). It can be formally obtained by replacing −λajuj by fj in (2.70) as μ = 0
in (2.72), (2.76), and (2.78).

The problem called the first S. G. Krein auxiliary problem arises:

Ljvj = fj , j = 1, q;

γjklvj = γkjlvk, ∂jklvj + ∂kjlvk + δjklγjklvj = 0, l = 1, 2;

∂jklvj = −∂kjlvk = −δjkl(γjklvj − γkjlvk), l = 3, 4, k > j;

∂jjlvj + δjjlγjjlvj = 0, l = 1, 2;

γjj3vj = 0, j = 1, q.

(3.18)

Definition 3.1. Let us say that an element v := (v1, . . . , vq) ∈ V is a weak (variation) solution of
problem (3.18) if the following equation holds:

〈η, f〉E :=

q∑
j=1

〈ηj , fj〉Ej = (η, v)V ∀η ∈ V. (3.19)

Equation (3.19) can be derived from Eqs. (3.18) and the Green formula (3.11) for the elements η
and v.

Theorem 3.1. Assume that
f = (f1, . . . , fq) ∈ V ∗. (3.20)

Then the following assertions hold:
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1◦. The operator form (3.18) and variation form (3.19) of the first S. G. Krein problem are equiv-
alent.

2◦. Since

f = (f1, . . . , fq) ∈ E =

q⊕
j=1

Ej ,

problem (3.18) has a unique general solution

v = A−1f ∈ D(A) ⊂ V,

where A is a self-adjoint, positive definite operator, which is a generating operator for the pair
of spaces (V ;E). Moreover, the following equation holds:

(η,Av)E = (η, v)V = (A1/2η,A1/2v)E ∀η ∈ V, v ∈ D(A). (3.21)

3◦. Under condition (3.20), problem (3.19) has a unique weak solution

v = A−1f ∈ V, (3.22)

for which the following equation holds:

〈η,Av〉E = (η, v)V = (A1/2η,A1/2v)E ∀η ∈ V. (3.23)

Vice versa, each element v ∈ V is a weak solution of problem (3.18) as f = Av ∈ V ∗.

Proof. The proof is standard and is based on the fact that the left-hand side in (3.19) under the
condition (3.20) is a bounded linear functional with respect to η ∈ V . Moreover, the inner product
in V is given by formula (3.16). Therefore, we take into account the equivalence property of the
norms (3.17).

As was already mentioned, Eq. (3.19) follows from Eq. (3.18). Let us prove the inverse assertion.
From (3.19), the Green formula (3.11), and the definition (3.16) of the inner product in V , we have

q∑
j=1

〈ηj , Ljvj − fj〉Ej +

q∑
j=1

∑
k>j

2∑
l=1

〈γjklηj , ∂jklvj + ∂kjlvk + δjklγjklvj〉Gjkl

+

q∑
j=1

∑
k>j

4∑
l=3

〈γjklηj , ∂jklvj + δjkl(γjklvj − γkjlvk)〉Gjkl

+

q∑
j=1

∑
k>j

4∑
l=3

〈γkjlηk, ∂kjlvk − δjkl(γjklvj − γkjlvk)〉Gjkl
+

q∑
j=1

2∑
l=1

〈γjjlηj , ∂jjlvj + δjjlγjjlvj〉Gjjl
= 0.

(3.24)

Now we use the same reasoning as in the proof of Lemma 3.1. We set η ∈ N , and assume that the first
conditions of (3.18) holds, i.e., Ljvj = fj . Assuming that only γjjlηj has arbitrary values from (G+)jjl,
and the other components of the element η ∈ V are zero, we conclude that ∂jjlvj + δjjlγjjlvj = 0,
l = 1, 2, and these relations are valid in (G+)

∗
jjl.

Reasoning similarly with respect to the second, third, and fourth sums of (3.24) we see that the
other natural (from the variation point of view) boundary conditions from (3.18) hold. Moreover, all
the summands from these relations are elements of the corresponding spaces (G+)

∗
jkl.

The other statements of the theorem can be proved with help of a standard scheme (see, e.g., [31,
pp. 32–42].)
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3.3. On the abstract Green formula for multicomponent conjugation problems. Let us
transform the Green formula (3.11) by extracting the inner product (η, u)V from (3.16) in explicit
form. This gives the equation

q∑
j=1

〈ηj , Ljuj〉Ej = (η, u)V −
{ q∑
j=1

∑
k>j

2∑
l=1

〈γjklηj , ∂jkluj + ∂kjluk + δjklγjkluj〉Gjkl

+

q∑
j=1

∑
k>j

4∑
l=3

〈γjklηj , ∂jkluj + δjkl(γjkluj − γkjluk)〉Gjkl

+

q∑
j=1

∑
k>j

4∑
l=3

〈γkjlηk, ∂kjluk − δjkl(γjkluj − γkjluk)〉Gjkl
+

q∑
j=1

2∑
l=1

〈γjjlηj , ∂jjluj + δjjlγjjluj〉Gjjl

}

(3.25)

for every η, u ∈ V .
Let us introduce the following notation for the elements η and u from V :

Lu := (L1u1, . . . , Lquq) ∈ V ∗, (3.26)

γη :=
(
γjklηj , l = 1, 2, k > j, j = 1, q; γjklηj , l = 3, 4, k > j, j = 1, q;

γkjlηk, l = 3, 4, k > j, j = 1, q; γjjlηj , l = 1, 2, j = 1, q
)

∈ G+ :=

⎛
⎝ q∑
j=1

∑
k>j

2∑
l=1

(�)(G+)jkl

⎞
⎠

(�)

⎛
⎝ q∑
j=1

∑
k>j

4∑
l=3

(�)
(
(G+)jkl(�)(G+)jkl

)⎞⎠ (�)

⎛
⎝ q∑
j=1

2∑
l=1

(�)(G+)jjl

⎞
⎠

⊂→G :=

⎛
⎝ q∑
j=1

∑
k>j

2∑
l=1

⊕Gjkl

⎞
⎠⊕

⎛
⎝ q∑
j=1

∑
k>j

4∑
l=3

⊕(Gjkl ⊕Gjkl
)
⎞
⎠⊕

⎛
⎝ q∑
j=1

2∑
l=1

⊕Gjjl

⎞
⎠ ; (3.27)

∂u :=
(
∂jkluj + ∂kjluk + δjklγjkluj , l = 1, 2, k > j, j = 1, q;

∂jkluj + δjkl(γjkluj − γkjluk), l = 3, 4, k > j, j = 1, q;

∂kjluk − δjkl(γjkluj − γkjluk), l = 3, 4, k > j, j = 1, q; ∂jjluj + δjjlγjjluj , l = 1, 2, j = 1, q
)

∈ (G+)
∗ :=

⎛
⎝ q∑
j=1

∑
k>j

2∑
l=1

(�)(G+)
∗
jkl

⎞
⎠ (�)

⎛
⎝ q∑
j=1

∑
k>j

4∑
l=3

(�)
(
(G+)

∗
jkl(�)(G+)

∗
jkl

)⎞⎠

(�)

⎛
⎝ q∑
j=1

2∑
l=1

(�)(G+)
∗
jjl

⎞
⎠ , G+ ⊂→G ⊂→(G+)

∗. (3.28)

Then formula (3.25) can be rewritten in brief form as follows:

〈η, Lu〉E = (η, u)V − 〈γη, ∂u〉G ∀η, u ∈ V, (3.29)

where 〈γη, ∂u〉G is the expression in the braces from (3.25). In this form, it is the same as the Green
formula for a set of spaces E, V and G and for the trace operator γ (see (1.6)).
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Recall that here η and u are the sets of elements of the type of (3.2) satisfying the main boundary
conditions. Let us note that if all δjkl = 0, then

(η, u)V = (η, u)F =

q∑
j=1

(ηj , uj)Fj , (3.30)

and the Green formula (3.25) turns into formula (3.11).
Taking into account notation (3.26)–(3.28), we can rewrite the first auxiliary problem (3.18) in the

following form:

Lv = f, ∂v = 0. (3.31)

Consequently, the operator A of the Hilbert pair (V ;E) is defined on the following domain:

D(A) =
{
v ∈ V : Lv ∈ E, ∂v = 0

} ⊂ V. (3.32)

After the extension of this operator to V = D(A1/2), we have

D(A) = V, R(A) = V ∗, A1/2V = E, A1/2E = V ∗. (3.33)

3.4. The second auxiliary boundary-value problem. Let us consider a boundary-value prob-
lem for homogeneous equations and nonhomogeneous boundary conditions. Such a problem can be
formally obtained from (2.70)–(2.80) as λ = 0 and after substituting all the natural boundary condi-
tions for the corresponding nonhomogeneous conditions.

The problem called the second auxiliary S. G. Krein problem arises:

Ljwj = 0, j = 1, q;

γjklwj = γkjlwk, ∂jklwj + ∂kjlwk + δjklγjklwj = ψjkl, l = 1, 2;

∂jklwj + δjkl(γjklwj − γkjlwk) = ψjkl,

∂kjlwk − δjkl(γjklwj − γkjlwk) = ψkjl, l = 3, 4;

∂jjlwj + δjjlγjjlwj = ψjjl, l = 1, 2.

(3.34)

Here, as above, the last boundary conditions are given for j = 1, q, and the others are given for k > j,
j = 1, q.

Using notation (3.26)–(3.28), we can rewrite problem (3.34) in brief form:

Lw = 0, ∂w = ψ, (3.35)

ψ :=
(
ψjkl, l = 1, 2, k > j, j = 1, q; ψjkl, l = 3, 4, k > j, j = 1, q;

ψkjl, l = 3, 4, k > j, j = 1, q; ψjjl, l = 1, 2, j = 1, q
)
. (3.36)

Definition 3.2. We say that an element w := (w1, . . . , wq) ∈ V is a weak (variation) solution of
problem (3.34) (or (3.35)) if

〈γη, ψ〉E = (η, w)V ∀η ∈ V. (3.37)

Obviously, Eq. (3.37) follows from Eqs. (3.35) and (3.29).

Theorem 3.2. Assume that

ψ ∈ (G+)
∗. (3.38)

Then the following assertions hold:

1◦. The operator form (3.34) and variational form (3.37) of the second auxiliary S. G. Krein problem
are equivalent.
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2◦. Under condition (3.38), problem (3.37) has a unique weak solution

w =: TMψ, TM : (G+)
∗ →M ⊂ V, (3.39)

where M is the subspace of “harmonic” elements,

M := {w = TMψ : ψ ∈ (G+)
∗} . (3.40)

Moreover, the following orthogonal decomposition holds in the inner product of the space V :

V = N ⊕M, N =

q⊕
j=1

Nj , Nj = ker γj , j = 1, q. (3.41)

Proof. The proof is standard, as in Theorem 3.1, and it is based on the fact that the left-hand side of
Eq. (3.37) is a bounded linear functional on V iff condition (3.38) is valid.

Let us prove the first statement. It suffices to verify that all relations (3.34) follow from (3.37).
Indeed, by virtue of the Green formula (3.25) and the definition of the expression 〈γη, ψ〉E , we have

(η, w)V − 〈γη, ψ〉E =

q∑
j=1

〈ηj , Ljwj〉Ej +

q∑
j=1

∑
k>j

2∑
l=1

〈γjklηj , ∂jklwj + ∂kjlwk + δjklγjklwj − ψjkl〉Gjkl

+

q∑
j=1

∑
k>j

4∑
l=3

〈γjklηj , ∂jklwj + δjkl(γjklwj − γkjlwk)− ψjkl〉Gjkl

+

q∑
j=1

∑
k>j

4∑
l=3

〈γkjlηk, ∂kjlwk − δjkl(γjklwj − γkjlwk)− ψkjl〉Gjkl

+

q∑
j=1

2∑
l=1

〈γjjlηj , ∂jjlwj + δjjlγjjlwj − ψjjl〉Gjjl
= 0.

The first statement follows from this since all γjklηj are arbitrary.
Let us prove the second statement of the theorem. Since ψ ∈ (G+)

∗, the expression 〈γη, ψ〉E is
a bounded linear functional on V ; therefore, for every ψ ∈ (G+)

∗, there exists a unique element
w =: TMψ ∈ V such that Eq. (3.37) for every η ∈ V . Moreover, TM : (G+)

∗ → V is a bounded linear
operator. This implies that the range of values of the operator TM forms a subspace of V , which we
will call the subspace of “harmonic” elements.

Finally, let us verify that decomposition (3.41) is valid in the inner product of the space V . Let
w ∈M and η ⊥M . Then

(η, w)V =

q∑
j=1

〈ηj , Ljwj〉Ej +

q∑
j=1

∑
k>j

2∑
l=1

〈γjklηj , ∂jklwj + ∂kjlwk + δjklγjklwj〉Gjkl
+

+

q∑
j=1

∑
k>j

4∑
l=3

[〈γjklηj , ∂jklwj + δjkl(γjklwj − γkjlwk)〉Gjkl
+ 〈γkjlηk, ∂kjlwk − δjkl(γjklwj − γkjlwk)〉Gjkl

]

+

q∑
j=1

2∑
l=1

〈γjjlηj , ∂jjlwj + δjjlγjjlwj〉Gjjl
= 0. (3.42)
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Since Ljwj = 0 here and the second factors in every functional have arbitrary values ψjkl ∈ (G+)
∗
jkl

(see (3.34)), we obtain the following relations from (3.42):

γjklηj = 0, l = 1, 4, k > j, j = 1, q;

γkjlηj = 0, l = 3, 4, k > j, j = 1, q;

γjjlηj = 0, l = 1, 2, j = 1, q.

Along with conditions (3.2) which show that η ∈ V , i.e., with the conditions

γjklηj = γkjlηk, l = 1, 2, k > j, j = 1, q; γjj3ηj = 0, j = 1, q,

we have that for all j = 1, q, every γjklηj , γkjlηk is equal to zero as k > j, l = 1, 4, and every γjjlηj is
equal to zero as l = 1, 3. Thus, η ∈ N .

3.5. Representation theorem for every element of the space of solutions. Let u ∈ V be
any element of the space of solutions of (3.2). Let us show that this element can be represented by
its characteristics Lu ∈ V ∗ and ∂u ∈ (G+)

∗.

Theorem 3.3. Any element u ∈ V can be represented a unique representation if the following form:

u = v + w = A−1(Lu) + TM (∂u), (3.43)

where v and w are the solutions of the first and second auxiliary boundary-value problems, respectively:

Lv = Lu ∈ V ∗, ∂v = 0, (3.44)

Lw = 0, ∂w = ∂u ∈ (G+)
∗, (3.45)

and A−1 : V ∗ → V , TM : (G+)
∗ →M ⊂ V are the corresponding operators of these problems.

Proof. Since u ∈ V , we have that Lu ∈ V ∗, and by virtue of Theorem 3.1, problem (3.18) (as f = Lu)
has a unique solution v = A−1(Lu). Similarly, for every u ∈ V , we have ∂u ∈ (G+)

∗, and by virtue of
Theorem 3.2, problem (3.45) has a unique solution w = TM (∂u).

Let us introduce an element ũ := v + w = A−1(Lu) + TM (∂u) and show that ũ = u. Indeed, by
virtue of Theorems 3.1 and 3.2, we have (taking into account Eqs. (3.44), (2.76))

Lũ = Lv = Lu, ∂ũ = ∂w = ∂u.

This and the Green formulas (3.29) for pair of elements (η; ũ) and (η;u) imply that

〈η, Lu〉E = (η, ũ)V − 〈γη, ∂u〉G,
〈η, Lu〉E = (η, u)V − 〈γη, ∂u〉G.

Therefore,
(η, u− ũ)V = 0 ∀η ∈ V,

and ũ = u, and representation (3.43) is proved.

Remark 3.1. It follows from Theorem 3.3 and the orthogonal decomposition (3.41) that there is a
bijection between the elements v and w from (3.43) and elements uN := PNu and uM := PMu, where
PN and PM are orthogonal projectors to N and M , respectively. To prove this, let us note that
(see [25, 31]) in the proof of the Green formula (1.6), the operator ∂u was constructed at elements
from M and N and then it was extended by linearity to the whole space F = N ⊕M , i.e.,

∂u = ∂MuM + ∂NuN , ∂M = T−1
M . (3.46)

Taking into account decomposition (3.41), we see that a similar approach holds for Green for-
mula (3.29). We have

∂w = ∂u = ∂MuM + ∂NuN , w = TM (∂w) = uM + TM∂NuN . (3.47)

Thus,
v = u− w = uN + uM − (uM + TM∂NuN ) = uN − TM∂NuN . (3.48)
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We obtain the inverse correspondence as follows. Since uN ∈ N , TM∂NuN ∈M , in (3.48) we have,
taking into account w ∈M , that

uN = PNv, uM = PMv + w. (3.49)

4. Applications

Abstract self-adjoint and non-self-adjoint problems generated by different problems are considered
in the present section. Among these problems are the spectral Stefan problem, problems of diffraction
theory, problems of the type of S. G. Krein (about normal oscillations of a viscous fluid in an open
vessel), a problem on the spectrum of bounded self-adjoint operators, and problems on the surface
dissipation of energy. The operators of two auxiliary S. G. Krein boundary-value problems and their
properties are widely used. This allows us to simplify each problem under consideration and use some
known results from the theory of self-adjoint and non-self-adjoint operators, the spectral theory of
operator-functions (operator sheaves), and the theory of operators in a space with indefinite metrics.

Let us assume that below all conditions from Sec. 3 that provide the existence of the abstract Green
formula (3.29) for multicomponent conjugation problems are valid.

4.1. Spectral Stefan problem with the Gibbs–Thomson condition. This problem arises in
the study of phase transitions of a substance (ice melting, metal fusion, etc.). Let us give its simplest
linear formulation.

Consider the following equation in a domain Ω ⊂ R
m with a piecewise boundary ∂Ω:

∂u

∂t
= Δu+ f(t, x), Δu :=

m∑
k=1

∂2u

∂x2k
, (4.1)

where u = u(t, x) is a desired function and f(t, x) is a given function. Assume that the boundary
∂Ω consists of two parts: Γ and S := ∂Ω \ Γ. The second desired function ζ = ζ(t, x), x ∈ Γ, which
characterizes smaller motions of Γ, is given at a part of Γ ∈ C2. The following conditions are valid for
this function:

u+ΔΓζ = 0,
∂ζ

∂t
− ∂u

∂n
= 0, (4.2)

where ΔΓ is the Laplace–Beltrami operator and ∂/∂n is the derivative with respect to the outward
normal �n to ∂Ω. Assume that the following complementary conditions hold:

ζ = 0 (at ∂Γ), (4.3)

u = 0 (at S). (4.4)

Note that problem (4.1)–(4.4) is a linearized model of the one-phase problem considered at a small time
interval t ∈ [0;T ]. Its statement arises, e.g., from a model problem considered in [48] (see also [12]).
The first of conditions (4.2) arises from the Gibbs–Thomson law and the second arises from the Stefan
condition.

Let us introduce the operator B : D(B) ⊂ L2(Γ) → L2(Γ),

Bζ := −ΔΓζ, D(B) := {ζ ∈ H2(Γ) : ζ = 0 (on ∂Γ)}. (4.5)

This operator is self-adjoint and is positive definite in L2(Γ), and its inverse operator is positive and
compact.

Let us consider the homogeneous problem (4.1)–(4.4) and its solutions depending on t by the
formula exp(−λt), λ ∈ C; such solutions are called normal motions of the dynamical system. Then
for amplitude elements u = u(x), x ∈ Ω, and ζ = ζ(x), x ∈ Γ (taking into account (4.5)), we have the
following association: Bζ = u, i.e., u = B−1ζ. Excluding ζ, we obtain the following spectral problem
for u:

−Δu = λu (in Ω), u = 0 (at S),
∂u

∂n
= λB−1u (at Γ). (4.6)
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Let us call this problem the spectral Stefan problem with the Gibbs–Thomson condition.
Problems of this type were considered by many authors (see, e.g., [11, 16, 17]). Recently, they were

considered in [13, 36, 58, 59], including the case where the right-hand side in the boundary conditions
for Γ is either positive or negative.

Let us consider a generalization of problem (4.6) to the case of a multicomponent abstract conjuga-
tion problem (an abstract generalization of the modified Stefan problem in general form was considered
in [36]). Let requirements (2.65)–(2.68) and the conditions providing the existence of the Green for-
mula (2.64) be valid. Then the problem consists of Eqs. (2.70), where λ is replaced by −λ, and the
boundary conditions (2.72)–(2.80), where μ is replaced by ±λ. We assume that requirements (2.71),
(2.73), and (2.74) hold for the operators aj , δjkl, and αjkl, respectively.

Let us introduce the following notation:

au := (a1u1, . . . , aquq), (4.7)

αγu :=
(
αjk1γjk1uj , 0, αjk3(γjk3uj − γkj3uk), 0,

− αjk3(γjk3uj − γkj3uk), 0 (k > j), αjj1γjj1uj , 0 (j = 1, q)
)
. (4.8)

Then we can rewrite the statement of the Stefan problem in the following brief form taking into
account notation (3.26)–(3.28):

Lu = λau, ∂u = λJαγu, u ∈ V, (4.9)

where the signature operator J is diagonal in decomposition (3.27), (3.28); moreover, its diagonal
consists of identity operators multiplied by ±1 (depending on the sign at λ in the boundary condition
of the initial problem).

Let us use the properties of solutions of the auxiliary boundary-value problem from Secs. 3.2–3.5 to
study problem (4.9) and to reduce it to a standard problem for eigenvalues. By virtue of Theorem 3.3
and formula (3.6) the solution of problem (4.9) has the following form:

u = A−1(Lu) + TM (∂u) = A−1(λau) + TM (λJαγu), u ∈ V,

where A is an operator of the Hilbert pair (V ;E), A ∈ L(V, V ∗), and TM is a resolving operator of
the second auxiliary problem (see Sec. 3.4.)

Thus, the following spectral problem arises in the space V :

u = λ
(
A−1au+ TMJαγu

)
. (4.10)

Let us transform it to a more symmetric form. Since V = D(A1/2), we can assume that

u = A−1/2η, η ∈ E. (4.11)

Then we have from (4.10)

A−1/2η = λ
(
A−1aA−1/2η + TMJαγA

−1/2η
)
.

Each term here is an element of V = D(A1/2) ⊂ E; therefore, we apply the operator A1/2 to both
sides and obtain the following equation in the space E:

η = λ (Aη + Bη) , A := A−1/2aA−1/2, (4.12)

B := Q∗(Jα)Q, Q := γA−1/2, Q∗ := A1/2TM . (4.13)

Lemma 4.1. Let the operator a form (4.7) have the following property:

a1/2 ∈ S∞(V ;E), (4.14)

i.e., it is a compact operator acting from V to E. Then the operator A from (4.12) is a compact
positive operator acting in E.
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Proof. Since A−1/2 ∈ L(E;V ) and (4.14) is valid, we see that a1/2A−1/2 ∈ S∞(E). Therefore,

A = A−1/2aA−1/2 = (a1/2A−1/2)∗(a1/2A−1/2) ≥ 0. Since A and a are invertible (see (2.71) and (4.7)),
we have that A > 0.

Let us consider the properties of the operator B from (4.13).

Lemma 4.2. The operators Q = γA−1/2 : E → G and Q∗ = A1/2TM : G → E are self-conjugated.
If G+ ⊂→ ⊂→G, then these operators are compact.

Proof. Since γ : V → G+ is a bounded operator and the operator A−1/2 acts boundedly from E to
V , we have that γA−1/2 ∈ L(E;G+). It follows, by virtue of the compactness of embedding of G+ to

G that γA−1/2 : E → G is a compact operator.
Let us use equality (3.37) for η = A−1/2v, v ∈ E and Definition (3.39) of the operator TM to prove

the property of self conjugacy of operators Q and Q∗. We have

〈γA−1/2v, ψ〉E = (A−1/2v, TMψ)V = (A1/2A−1/2v,A1/2TMψ)E

= (v,A1/2TMψ)E ∀v ∈ E, ∀ψ ∈ (G+)
∗ ⊃ G.

It follows from here as ψ ∈ G that

(v,A1/2TMψ)E = (γA−1/2v, ψ)G ∀v ∈ E, ∀ψ ∈ G.

Let us rewrite the statement for the quadratic form of the operator B using Lemma 4.2. Since
η = A1/2u ∈ E, we have by virtue of Definition (4.8) of the operator αγ and the signature operator J
that (see (3.16))

(η,Bη)E = 〈γu, (Jα)γu〉G =

q∑
j=1

∑
k>j

{± 〈γjk1uj , αjk1γjk1uj〉Gjk1

± 〈(γjk3uj − γkj3uk), αjk3(γjk3uj − γkj3uk)〉Gjk3

}
+

q∑
j=1

{±〈γjj1uj , αjj1γjj1uj〉Gjj1

}
. (4.15)

Here the signs plus or minus are the same as in the corresponding boundary condition for the Stefan
problem.

Since all the operators αjkl are positive definite (see (2.73)), we have that form (4.15) is real. Assume
(see property (4.14)) that the operator α ∈ S∞((G+); (G+)

∗) or, equally,

α1/2 ∈ S∞(G+;G). (4.16)

It is sufficient (by virtue of the structure of α), that all αjkl from (4.15) have the following property

αjkl ∈ S∞((G+)jkl; (G+)
∗
jkl). (4.17)

Lemma 4.3. If Condition (4.16) (or Condition (4.17)) holds, then the operator B from (4.13) is a
compact self-adjoint operator acting in E.

Proof. The proof follows from representation (4.13) or from form (4.15), and from Property (4.16);

therefore, γA−1/2 ∈ L(E;G+) (Lemma 4.2).

Lemma 4.4. The kernel ker(A+ B) of the operator A+ B is trivial for any signature operator J .

Proof. Let us consider the equation Aη + Bη = 0, i.e.,

A−1/2aA−1/2η +A1/2TM (Jα)γA−1/2η = 0, η ∈ E.

Let us make the reverse substitution (4.11) and apply the operator A−1/2 from the left. We have

A−1au+ TM (Jα)γu = 0, u ∈ V. (4.18)
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It follows from solutions of the first auxiliary problem (see Theorem 3.1 and relations (3.31)–(3.33))
that (4.18) is equal to the relations

Lϕ = −au, ϕ := TM (Jα)γu, ∂ϕ = 0.

Since the operator TM acts from (G+)
∗ to the subspace M (see (3.39)–(3.41)), we see that ϕ ∈M and

∂ϕ = ∂Mϕ = ∂MTM (Jα)γu = (Jα)γu (4.19)

as ∂M is the left-inverse for TM .
We have from (4.19) and (4.18) that A−1au = 0; then as A−1 is positive and a is positive definite

(see (4.7) and (2.71)) we can conclude that u = 0 and, consequently, η = A1/2u = 0.

It follows from this lemma and Lemmas 4.1 and 4.3 that the numbers λ = 0 and λ = ∞ are not
eigenvalues of problem (4.12). Therefore, it is equivalent to the following problem:

(A+ B) η = μη, λ = 1/μ, (4.20)

i.e., the problem for eigenvalues of the compact self-adjoint operator A+ B.
It is known that the positive eigenvalues μ+k of problem (4.20) are sequential (decreasing) positive

maxima of the variation relation
(Aη, η)E + (Bη, η)E

‖η‖2E
, (4.21)

and the negative eigenvalues μ−k are sequential (increasing) negative minima of the same relation.

Lemma 4.5. Let the conditions of Lemmas 4.1 and 4.3 hold. Then problem (4.20) has a branch
{μ+k }∞k=1 of positive eigenvalues of finite multiplicity with a limit point μ = 0.

Proof. It is sufficient to make sure that there is an infinite-dimensional subspace of E, where func-
tional (4.21) is positive. Nevertheless, if η = A1/2u, u ∈ N , then γu = 0 and hence Bη = 0. Then,
by virtue of the positiveness of A, we have that functional (4.21) gets positive values in infinite-

dimensional A1/2N ⊂ E.

Note that if J = I, i.e., every sign at λ in the statement of problem is positive, then B ≥ 0 and,
therefore, problem (4.20) has only a branch of positive eigenvalues. Let us consider the case where
the signature operator J is at least once negative, i.e., J �= I. This means that quadratic form (4.15)
has at least one negative term. Let us show that in this case problem (4.20) has a branch {μ−k }∞k=1 of
negative eigenvalues with a limit point zero.

It is obvious that, in our assumption, the operator B can be represented in the following form:

B = B1 − B2, Bi ≥ 0, i = 1, 2, (4.22)

where B1 refers to a nonnegative part of quadratic form (4.15) and B2 refers to a negative part.
Let us consider the Steklov auxiliary problem

Lw = 0, ∂w = λ(Jα)γw, w ∈M. (4.23)

Lemma 4.6. If quadratic form (4.15) can be positive or negative in infinite-dimensional subspaces
(and Condition (4.16) or (4.17) holds), then problem (4.23) has a real discrete spectrum consisting
of two branches: positive eigenvalues λ+k = λ+k (B), k = 1, 2, . . . , λ+k → +∞ (k → ∞) and negative

eigenvalues λ−k = λ−k (B), λ−k → −∞ (k → ∞). The following system of eigenelements which form an

orthogonal basis in subspace M ⊂ V refers to these branches: {w+
k }∞k=1 ∪ {w−

k }∞k=1.

Proof. It follows from the second S. G. Krein auxiliary problem (3.34) that Eqs. (4.23) are equal to
the relation

w = λTM (Jα)γw. (4.24)

After the substitution w = A−1/2η, η ∈ E, we obtain the equation

η = λBη = λ(B1 − B2)η, (4.25)

157



where the quadratic form of operator B can be (it follows from the statement of the lemma) positive
and negative in infinite-dimensional subspaces. Since operator B is compact, the statement of the
lemma including the fact that eigenelements of problem (4.24) form a basis in M follows from the
Hilbert–Schmidt theorem.

It follows from Lemma 4.6 and its proof that if a quadratic form of operator B2 is positive in an
infinite-dimensional subset, then operator B has a branch of negative eigenvalues {μ−k }∞k=1 and the

sequence of eigenelements {w−
k }∞k=1 corresponding to this branch and forming an orthogonal system

in M ⊂ V .

Lemma 4.7. If the dimension of the range of values of operator B2 is infinite, i.e., the quadratic
form (4.15) is negative in infinite-dimensional space (the case of J �= I) and if the condition

a1/2 ∈ L(E) (4.26)

and the conditions of Lemmas 4.1 and 4.3 hold, then problem (4.12) has a branch of negative eigenvalue
λ−k , λ

−
k → −∞ (k → ∞).

Proof. It is sufficient to ensure that the quadratic functional (Aη, η)E + (Bη, η)E is negative in the
infinite-dimensional subspace.

After the substitution η = A1/2u we have

(η,Aη)E + (η,Bη)E = (η,A−1/2aA−1/2η)E + (η,A1/2TM (Jα)γA−1/2η)E

= 〈u, au〉E + 〈γu, (Jα)γu〉G = ‖a1/2u‖2E + 〈γu, (Jα)γu〉G. (4.27)

Let {w−
k }∞k=1 be a sequence of normalized in M eigenelements of the Steklov problem (4.24) that

correspond to eigenvalues λ−k of this problem, λ−k → −∞ (k → ∞). Then we have, for elements of
this sequence,

〈γw−
k , (Jα)γw

−
k 〉G = 1/λ−k < 0, k = 1, 2, . . . .

Since N is dense in E (see (3.13)), we have for every w−
k and εk > 0 that there is such an element

uk ∈ N that

‖w−
k − uk‖2E < εk/‖a1/2‖2. (4.28)

Quadratic form (4.27) is negative at the elements w−
k − uk, k = 1, 2, . . . because

‖a1/2(w−
k − uk)‖2E + 〈γ(w−

k − uk), (Jα)γ(w
−
k − uk)〉G

≤ ‖a1/2‖ · ‖w−
k − uk‖2E + 〈γw−

k , (Jα)γw
−
k 〉G < εk + 1/λ−k < 0, k = 1, 2, . . . ,

if we choose

0 < εk < −(1/λ−k ), k = 1, 2, . . . .

Note that the sequence {w−
k − uk}∞k=1 consists of linearly independent elements. Indeed,

∞∑
k=1

ck(w
−
k − uk) = 0 ⇒

∞∑
k=1

ckw
−
k =

∞∑
k=1

ckuk = 0,

since the first sum belongs to M and the second sum belongs to the orthogonal subspace N . Since
the system {w−

k }∞k=1 is orthogonal in M , it follows that ck = 0, k = 1, n.

We see that {w−
k − uk}∞k=1 is a desired sequence of linearly independent elements from V at which

quadratic form (4.27) is negative.

Using all these facts, we formulate the final statement about properties of solutions of the multi-
component abstract Stefan problem with the Gibbs–Thompson condition.
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Theorem 4.1. Let operators L, γ and ∂ be such that the abstract Green formula (3.29) holds. Let
operators a and αγ be defined by formulas (4.7) and (4.8), and conditions (2.71), (2.73), (2.74), (4.14),
and (4.16) hold. Then the following assertions hold.

1◦. The spectral problem (4.9) has a discrete real spectrum consisting of eigenvalues {λn}∞n=1 of
finite multiplicity with a limit point at the infinity.

2◦. The eigenelements {un}∞n=1 of problem (4.9) corresponding to the eigenvalues {λn}∞n=1 form an
orthonormal basis in the space V , and the following orthogonal conditions hold:

(um, un)V = λn {〈um, aun〉E + 〈γum, (Jα)γun〉G} = δmn, (4.29)

where δmn is the Kronecker symbol.
3◦. If J = I, i.e., every sign at the spectral parameter λ in the boundary conditions is positive in

the statement of problem (4.9), then every eigenvalue of this problem is positive.
4◦. If J �= I and, consequently, the quadratic form (4.15) is negative at an infinite-dimensional

subspace and, moreover, if condition (4.26) holds, then problem (4.9) has two branches of
eigenvalues: a positive branch {λ+k }∞k=1, λ+k → +∞ (k → ∞), and a negative branch

{λ−k }∞k=1, λ
−
k → −∞ (k → ∞).

5◦. The following inequalities hold for the eigenvalues λ+k and λ−k :

λ−k ≤ ν−k < 0 < ν+k ≤ λ+k , k = 1, 2, . . . ,

where 1/ν+k are eigenvalues of variational relation (4.21) for J = I or the following relation
(see (4.27)):

[〈u, au〉E + 〈γu, α(γu)〉G]/‖u‖2V , u ∈ V,

and 1/ν−k are eigenvalues of the variational relation

−(B2η, η)E
‖η‖2E

=
−〈γu, α2(γu)〉G

‖u‖2V
, u = A−1/2η, η ∈ E,

where α2 is a part of the operator α that generates the operator B2 from (4.22) and corresponds
to negative quadratic functionals in (4.15).

Proof. 1◦ follows from Lemmas 4.1–4.3 and the Hilbert–Schmidt theorem.
2◦ follows from the Hilbert–Schmidt theorem and the fact that λ = 0 and λ = ∞ are not eigenvalues

of problem (4.12). Thus, formulas (4.29) directly follow from (4.12) after substitution A−1/2η = u ∈ V .
3◦ follows from the fact that A+ B > 0 as J = I.
4◦ follows from Lemma 4.7.
5◦ follows from the maximum principles for eigenvalues of compact self-adjoint operators.

4.2. Conjugation problems in diffraction theory. Let us again consider multicomponent ab-
stract conjugation problem (2.70)–(2.80) generated by the problem of diffraction. Using nota-
tion (3.26)–(3.28), and (4.7) and (4.8) we can rewrite this problem in the following short form:

Lu+ λau = 0, ∂u = μαγu, λ, μ ∈ C, u ∈ V. (4.30)

Problem (4.30) can be reduced to problem (4.9) with help of substitution of λ by −λ in the first
equation and μ by λJ in the second equation. Thus, to study problem (4.30) we can use the same
approaches as for problem (4.9).

Again, using representation of any element u ∈ V (see formula (3.43)) we obtain from Eqs. (4.30)
that

u = A−1(−λau) + TM (μαγu), u ∈ V.

Substituting (see (4.11)) u = A−1/2η, η ∈ E, we obtain the following equation:

η + λAη − μBη = 0, A = A−1/2aA−1/2, B = Q∗αQ, (4.31)
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where operator A is the same as in problem (4.12), and B is a special case of operator B from (4.13)
where J = I.

It follows from here that the statement of Lemma 4.1 is valid for operator A and the statements of
Lemmas 4.2–4.4 are valid for operator B from (4.31). Let us note that in this case the quadratic form
of operator B has form (4.15) with the positive sign at every term, i.e.,

(Bη, η)E = (η,Bη)E = 〈γu, αγu〉G =

q∑
j=1

∑
k>j

{〈γjk1uj , αjk1γjk1uj〉Gjk1

+ 〈(γjk3uj − γkj3uk), αjk3(γjk3uj − γkj3uk)〉Gjk3

}
+

q∑
j=1

{〈γjj1uj , αjj1γjj1uj〉Gjj1

}
, u = A−1/2η.

(4.32)

Lemma 4.8. The operator B has an infinite-dimensional kernel

kerB =
{
η = A1/2u : u = (u1, . . . , uq) ∈ V, γjk1uj = γkj1uk = 0,

γjkluj = γkjluk, l = 2, 3, k > j; γjj1uj = γjj3uj = 0, j = 1, q
}
. (4.33)

Thus, the set

A1/2N :=
{
η = A1/2u : u ∈ N

} ⊂ kerB. (4.34)

Proof. the proof follows from the fact that quadratic form (4.32) is zero as

γjk1uj = 0, γjk3uj − γkj3uk = 0, k > j; γjj1uj = 0, j = 1, q,

since operators αjk1, αjk3, and αjj1 positive definite and u ∈ V . Then (see (3.2))

γjk1uj = γkj1uk, γjk2uj = γkj2uk = 0, k > j; γjj3uj = 0, j = 1, q.

Embedding (4.34) is obvious as conditions γjkluj = γkjluk = 0 (for all k ≥ j and l) are valid for all
elements from N =

⊕q
j=1Nj .

The following operator sheaf corresponds to Eq. (4.31):

K(λ, μ) := I + λA− μB.
It depends on the complex parameters λ and μ. Both variants are studied in diffraction problems
(see [4]): either λ is fixed and μ is a spectral parameter or vice versa. These parameters are almost
equivalent in problem (4.31); the difference between the variants is that A is positive (Lemma 4.1),
and operator B is nonnegative (see (4.32)) and has an infinite-dimensional kernel kerB (see (4.33)).

The equation of the form (4.31), i.e.,

K(λ, μ)η = 0, η ∈ E, (4.35)

was studied recently in papers [53, 55, 55] and [33, 34]. Therefore, the results of this study are given
here without a proof.

Assume that λ ∈ C is fixed and μ is a spectral parameter in problem (4.35). Introduce the following
notation:

E0 := kerB, E1 := E � E0, (4.36)

and denote by P0 and P1, respectively, the orthoprojectors on the subspaces (4.36). Representing the
solution η of problem (4.35) in the form

η = η0 + η1 := P0η + P1η,

we obtain the following system of equations instead of (4.35):

(I0 + λP0AP0)η0 + λP0AP1η1 = 0,

λP1AP0η0 + (I1 + λP1AP1)η1 − μB1η1 = 0, B1 := P1BP1,
(4.37)
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where B1 is a compact positive operator and I0 and I1 are the identity operators in E0 and E1,
respectively.

Theorem 4.2. Let the general condition hold in problem (4.35) (the non-self-adjoint case)

Imλ �= 0. (4.38)

Then the following statements hold:

1◦. If

B ∈ Sp(E) (4.39)

(where Sp(E) is the subspace of the space of compact operators that are summable with the factor
p, see [19, Secs. 2, 3]); then problem (4.35) has a discrete spectrum consisting of eigenvalues
{μk(λ)}∞k=1 of finite multiplicity with a unique limit point μ = ∞. If ε > 0 is arbitrarily small,
then all eigenvalues μk(λ), perhaps, except for a finite number, are situated in the angle

Λε(λ) :=
{
μ ∈ C : |argμ| < ε, sign Imμ = sign Imλ

}
.

In this case, the system of eigenelements and adjoint elements {ηk}∞k=1 of problem (4.35)
corresponding to the eigenvalues {μk(λ)}∞k=1 after the projection to the subspace E1, i.e., the

system of elements
{
P1ηk

}∞
k=1

, is complete in subspace E1.
2◦. If, instead of (4.39), a stronger asymptotic condition

λk(B) = λk(B1) = ck−β[1 + o(1)], c > 0, β > 0, k → ∞
holds for nonzero eigenvalues of operator B, then the following asymptotic formula is valid for
the eigenvalues {μk(λ)}∞k=1 of problem (4.35):

μk(λ) = λ−1
k (B1)[1 + o(1)], k → ∞.

In this case, the system of elements
{
P1ηk

}∞
k=1

forms the Abel–Lidsky basis (see [4, p. 248-249])

of order α > β−1 in the subspace E1.

If λ ∈ R, then problem (4.35) becomes self-adjoint. The following results take place.

Theorem 4.3. If the condition

λ ≥ 0 (4.40)

holds (the self-adjoint case), then problem (4.35) has a discrete spectrum {μk(λ)}∞k=1 consisting of
positive eigenvalues of finite multiplicities

μk(λ) ≥ λ−1
k (B1), k = 1, 2, . . . ,

with a limit point at +∞.
The eigenvalues

{
P1ηk

}∞
k=1

corresponding to the eigenvalues {μk(λ)}∞k=1 form an orthogonal basis
in the energy space EF1(λ) of the operator

F1(λ) := I1 + λP1AP1 − λ2P1AP0(I0 + λP0AP0)
−1P0AP1,

and a basis with respect to the quadratic form of the operator B1. We can take basis elements satisfying
the following normalization conditions:

(F1(λ)P1ηk, P1ηl) =: (P1ηk, P1ηl)F1(λ) = δkl, (B1P1ηk, P1ηl) = μ−1
k δkl

They are equivalent to the relations

(ηk, ηl) + λ(Aηk, ηl) = δkl, (Bηk, ηl) = μ−1
k δkl.
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Definition 4.1. Let us say that the parameter λ < 0 of problem (4.37) has nonexceptional values if
the following conditions hold:

1 + λλk(A) �= 0, 1 + λλk(P0AP0) �= 0, k = 1, 2, . . . ;

the numbers
λ = −λ−1

k (A), λ = −λ−1
k (P0AP0), k = 1, 2, . . . , (4.41)

are called exceptional values of the parameter λ.

Theorem 4.4. Let the parameter λ have nonexceptional negative values and κ = κF1(λ) > 0 be the
indefiniteness range of the quadratic form of operator F1(λ). Then problem (4.37) for this λ has a
discrete spectrum {μk(λ)}∞k=1 consisting of real eigenvalues of finite multiplicities with a unique limit
point λ = +∞. In this case, the eigenvalues {μk(λ)}κk=1 are negative and the others are positive.

The eigenelements
{
P1ηk

}∞
k=1

corresponding to the eigenvalues {μk(λ)}∞k=1 form a Riesz basis and
an orthonormal basis in E1 with respect to forms of operators F1(λ) and B1. We can choose elements
of this basis satisfying the following normalization conditions:

(F1(λ)P1ηk, P1ηl) = −δkl, 1 ≤ k, l ≤ κ;

(F1(λ)P1ηk, P1ηl) = δkl, k, l > κ;

(F1(λ)P1ηk, P1ηl) = 0, k ≤ κ, l > κ;

(B1P1ηk, P1ηl) = μ−1
k (λ)(F1(λ)P1ηk, P1ηl).

The case where the parameter λ has negative exceptional values (4.41) in problem (4.37) was
considered in [33, 34, 54]. It is proved that the spectrum of this problem is real and discrete with a
limit point at +∞, and eigenelements after projection to some infinite-dimensional subspace form a
Riesz basis in this subspace.

Let us again consider problem (4.31) assuming that the parameter μ ∈ C is fixed and λ is a spectral
parameter. This problem is simpler than the previous because the operator A > 0 is now considered
as the principal operator and hence kerA = {0}. Let us state analogs of Theorems 4.2–4.4 for this
case.

Theorem 4.5. In problem (4.31) with fixed μ, let the following general condition hold:

Imμ �= 0. (4.42)

Then the following assertions hold.

1◦. If
A ∈ Sp(E), (4.43)

then problem (4.31) has a discrete spectrum {λk(μ)}∞k=1,consisting of eigenvalues of finite mul-
tiplicities with a unique limit point λ = ∞. For an arbitrary small ε > 0, all eigenvalues λk(μ),
except, perhaps, a finite number, are situated in the angle

Λε(μ) :=
{
λ ∈ C : |arg(λ− π)| < ε, sign Imμ = sign Imλ

}
.

In this case, the system of eigenelements and adjoint elements {ηk}∞k=1 corresponding to the
eigenvalues {λk(μ)}∞k=1 is complete in the space E.

2◦. If, instead of (4.43), the following stronger asymptotic condition holds:

λk(A) = ck−α[1 + o(1)], c > 0, α > 0, k → ∞,

then for the eigenvalues {λk(μ)}∞k=1, the following asymptotic formula is valid:

λk(μ) = −λ−1
k (A)[1 + o(1)], k → ∞,

and the system of eigenelements and adjoint elements
{
ηk
}∞
k=1

forms the Abel–Lidsky basis of

the order β > α−1 in the space E.
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The following results are valid for a real fixed parameter μ.

Theorem 4.6. Let μ ≤ 0. Then problem (4.31) has a discrete spectrum {λk(μ)}∞k=1 consisting of
negative eigenvalues of finite multiplicities with a limit point at −∞. Eigenelements {ηk}∞k=1 of this
problem corresponding to the eigenvalues {λk(μ)}∞k=1 form an orthogonal basis in the energy space
EF (μ) of the operator F (μ) := I − μB, and a basis with respect to the quadratic form of the operator
A. We choose basic elements satisfying the following normalization conditions:

(F (μ)ηk, ηl)E =: (ηk, ηl)F (μ) = δkl, (Aηk, ηl)E = −λ−1
k (μ) δkl.

For positive μ, we assume that

μ �= λ−1
k (B), k = 1, 2, . . . , (4.44)

where {λk(B)}∞k=1 is a decreasing sequence of positive eigenvalues of the operator B, λk(B) → 0 (k →
∞); moreover,

1− λk(B) < 0, k = 1, . . . ,κ, 1− λκ+1(B) > 0. (4.45)

Theorem 4.7. Under conditions (4.44) and (4.45), problem (4.31) has a discrete spectrum
{λk(μ)}∞k=1 consisting of positive eigenvalues of finite multiplicities with a unique limit point λ = −∞.
In this case, the eigenvalues {λk(μ)}κk=1 are positive, and the others are negative.

The eigenelements {ηk}∞k=1 corresponding to the eigenvalues {λk(μ)}∞k=1 form a Riesz basis and an
orthonormal basis with respect to the quadratic forms of the operators F (μ) := I − μB and A. We
choose basic elements satisfying the following conditions:

(F (μ)ηk, ηl)E =

⎧⎨
⎩

−δkl, 1 ≤ k, l ≤ κ;
0, k ≤ κ, l > κ;

δkl, k, l > κ;

(Aηk, ηl)E = −λ−1
k (μ)(F (μ)ηk, ηl)E .

If the parameter μ > 0 has one of the exceptional values when the equality sign is in (4.44), then
statements similar to Theorem 4.7 hold. In this case, problem (4.31) has also a zero eigenvalue of
finite multiplicity.

Remark 4.1. Nontrivial solutions of the Steklov problem (see (4.23))

Lw = 0, ∂w = μαγw, (4.46)

correspond to exceptional values of parameter μ, i.e., λ−1
k (B), k = 1, 2, . . .:

Indeed, it follows from the proof of Theorem 4.6 that this problem is equivalent to the equation

η = μBη
(see (4.23)–(4.25)).

Nontrivial solutions of the Neumann–Newton problem (for the first series) and, seemingly, of the
Dirichlet problem (for the second series) correspond to exceptional values of parameter λ from (4.41).

In particular, if
Lu+ λau = 0, ∂u = 0, (4.47)

then we have, by virtue of formula (3.43),

u = −A−1(λau), u = A−1/2η,

and then
η + λAη = 0, A = A−1/2aA−1/2.

Therefore, eigenvalues λ in this problem are equal to

λ = λk = −λ−1
k (A), k = 1, 2, . . . ;

they correspond to nontrivial solutions of problem (4.47).
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To prove the statement for the second series of (4.41), we consider the Dirichlet problem of the
form

Lu+ λau = 0, γu = 0.

4.3. Problems of S. G. Krein type. Problems of such type arise in studies of normal motion of
viscous fluid in nonfull vessels (see [8, 38, 39] and [31, Sec. 7]).

Such problems can be generalized to a spectral problem, which can be expressed in terms of operators
from the abstract Green formula (3.29) and a spectral parameter from the equation and the boundary
condition.

The problem is to find nonzero elements u ∈ V satisfying the following relations:

Lu = λau, λ∂u = Jαγu, (4.48)

where λ is a spectral parameter, the operator a ∈ L(E), a � 0, and α and J are the same as above
in Secs. 4.1 and 4.2.

Lemma 4.9. Problem (4.48) has a nonzero eigenvalue of infinite order corresponding to the proper
subspace

M0 :=
{
u = (u1, . . . , uq) ∈M : γjk1uj = γkj1uk = 0,

γjkluj = γkjluk =: ϕjkl ∈ (G+)jkl, l = 2, 3, k > j; γjj1uj = γjj3uj = 0, j = 1, q
}
.

Proof. From (4.48), we have for λ = 0

Lu = 0, Jαγu = 0. (4.49)

Therefore, u ∈ M and αγu = 0, since J2 = I and, consequently, J = J−1. Similarly to Lemma 4.8,
we take elements from M ⊂ V that satisfy relations (4.33).

Separating these trivial solutions and assuming that λ �= 0, we obtain the following problem:

η = λAη + λ−1Bη, η = A1/2u, λ �= 0. (4.50)

We call this problem the problem of S. G. Krein type. The operators A and B here are the same as in
the Stefan problem (Sec. 4.1), i.e., they are defined by relations (4.12) and (4.13). The statements of
Lemmas 4.1–4.4 hold.

Consider the simplest case of the problems of S. G. Krein type, that is, the case where the operator
α in (4.48), given by (4.8), is replaced by the identity operator, i.e., αγu = γu, and γu is defined
according to (3.27). Then the number λ = 0 is not an eigenvalue of the problem:

Lu = λau, λ∂u = Jγu.

Therefore, the following problem having only trivial solutions arises from (4.49) after substitution of
α for I:

Lu = 0, Jγu = 0.

Thus, we consider the following problem as λ �= 0:

η = λAη + λ−1Bη, η = A1/2u ∈ E, A = A−1/2aA−1/2, B = Q∗JQ. (4.51)

Problems of type (4.51) (for meromorphic S. G. Krein sheaves) generated a widespread studies in
the sixties of the last century and later. Therefore, we give only some results based on papers of
S. G. Krein and his disciples, Markus and Matsaev (see [43–45]), and Kopachevsky and Azizov.

Definition 4.2. A basis {ψk}∞k=1 of the Hilbert space E that can be obtained from the orthinormal
basis {ϕk}∞k=1 according to the law

ψk = Cϕk, k = 1, 2, . . . , C, C−1 ∈ L(E), (4.52)

is called a basis equivalent to a normalized basis or a Riesz basis.
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Definition 4.3. We say that the Riesz basis {ψk}∞k=1 is a p-basis if

C = I + T, T ∈ Sp (0 < p <∞)

in (4.52). If p = 2, this basis is called a Bary basis.

Lemma 4.10. The kernel of the operator B from (4.51) is the set of elements

kerB =
{
η = A1/2u : γu = 0

}
= A1/2N =: E0. (4.53)

Proof. Let η ∈ kerB, i.e., Bη = Q∗JQη = 0. Then for any ζ ∈ E we have

(Bη, ζ)E = (Q∗JQη, ζ)E = (JQη,Qζ)G = 0.

Here Qζ = γA−1/2ζ covers all G+ since A−1/2ζ covers all V while ζ is changing in E. Since G+ is
dense in G, we have JQη = 0; moreover, since J is invertible we have Qη = 0. Equation (4.53) follows
from here.

Since the operators A and B are self-adjoint and compact in (4.51), we see that the following
operator sheaf corresponds to this problem:

I − λA− λ−1B. (4.54)

This operator sheaf is a self-adjoint holomorphic operator-valued function of a parameter λ at the
whole complex plane C except for the points λ = 0 and λ = ∞. Such functions are called Fredholm
sheaves (see, e.g., [31, p. 74]). Since the sheaf under consideration is invertible, for example, at any
nonzero point of the conjugate axis, it is regular. This implies that the spectrum of problem (4.51)
is discrete and consists of isolated eigenvalues of finite multiplicities with limit points at λ = 0 and
λ = ∞.

Theorem 4.8. For the sheaf (4.54), let the following conditions be satisfied:

dimE1 := dim(E � E0) = ∞, 4‖A‖ · ‖B‖ < 1. (4.55)

Introduce the following numbers:

r± := (1±
√

1− 4‖A‖ · ‖B‖)/2‖A‖, 0 < r− < r+ <∞.

Then the following assertions hold.

1◦. Problem (4.51) has a discrete real spectrum with limit points at λ = 0 and λ = ∞.
2◦. The branch {λ0n}∞n=1 of eigenvalues situated on the interval [0, r−] refers to the limit point

λ = 0 for J = I. In the indefinite case, i.e., if J �= I and J �= −I, the two branches {λ+0n}∞n=1

and {λ−0n}∞n=1 of eigenvalues situated at intervals [0, r−] and [−r−, 0], respectively, refer to this
limit point. The system of eigenelements which forms the Riesz basis in E1 after projecting to
E1 = E � E0 refers to the whole collection of eigenvalues.

3◦. The branch {λ∞k}∞k=1 of eigenvalues situated at the interval [r+,∞) refers to the limit point
λ = ∞. The corresponding system of eigenelements forms the Riesz basis in E.

The proof of Theorem 4.8 can be found in [42, Theorem 30.2] and [23, 43].
We also assume that

A ∈ SpA , B ∈ SpB , pA, pB > 0 (4.56)

in problem (4.51).

Theorem 4.9. If conditions (4.56) are valid, then the following assertions hold.

1◦. The system of eigenelements corresponding to the eigenvalues lying on the interval [−r−, r−]
after projection to E1 forms a p-basis in E1 as p ≥ p0, where

p−1
0 = (pA)−1 + (pB)−1 .

2◦. The system of eigenelements corresponding to the eigenvalues at the interval [r+,∞) forms a
p-basis in E for the same p.
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The proof of these statements can be found in [10, 22–24, 32].
As a rule, the operators of Dirichlet, Neumann, and Newton boundary-value problems have a power

asymptotic of eigenvalues in problems of mathematical physics. In this case, the following statement
holds

Theorem 4.10. Assume that the following conditions are valid in problem (4.51):

λk(A) = cAk−1/α[1 + o(1)], k → ∞, cA > 0, α > 0;

λ±k (B) = ±c±Bk−1/β± [1 + o(1)], k → ∞, c±B > 0, β± > 0.

Then the following assertions hold.

1◦. For the branch {λ∞k}∞k=1 ⊂ [r+,∞) of eigenvalues with the limit point +∞, the following
asymptotic formula holds:

λ∞k = (λk(A))−1 [1 + o(1)], k → ∞.

2◦. For the branches {λ+0k}∞k=1 ⊂ [0, r−] and {λ−0k}∞k=1 ⊂ [−r−, 0] of eigenvalues with limit points
±0, the following asymptotic formula holds:

λ±0k = λ±k (B)[1 + o(1)], k → ∞.

This theorem directly follows from papers [44, 45].
Thus, the asymptotic behavior of three (or two) branches of eigenvalues in problem (4.51) is de-

fined by the corresponding asymptotic behavior of branches of eigenvalues of operators A and B. In
particular, there is a branch of eigenvalues with a limit point at zero at negative semiaxis for J �= I.
This situation arises, for example, in the problem of instability for normal motion of a heavy viscous
revolving fluid (see [31, p. 312–325].)

If the condition 4‖A‖ · ‖B‖ < 1 is not valid (see (4.55)), then problem (4.51) can have, in addition,
a finite number of complex conjugate pair of eigenvalues of finite multiplicities. In particular, in the
hydrodynamical S. G. Krein problem, this condition is valid for the sufficiently large viscosity of the
liquid and is not valid for sufficiently small viscosity. In the second case, Theorems 4.8–4.10 hold but
in the corresponding subspaces of finite codimension.

4.4. Problems on the spectrum of bounded operators. The problem under consideration
arose in the research of Yudovich on convection theory. He studied problems of stability of new
normal motions of dynamical systems arising after bifurcation. This problem can be formulated in
the following form in terms of operators connected with Green formula (3.29) (see [21].)

Let u ∈ V and ϕ ∈ G be unknown elements. We find nonzero solutions of the system of equations

Au+ w = λu, γu = λϕ, Lw = 0, ∂w = ϕ, (4.57)

where A is an operator of a Hilbert pair (V ;E) and λ is a spectral parameter.
Let us transform problem (4.57) and reduce it to a spectral problem for a bounded self-adjoint

operator acting in the space E ⊕G.
The last two equations from (4.57) and the second auxiliary problem (Sec. 3.4) imply that

w = TMϕ,

and then we have the following problem instead of (4.57):

Au+ TMϕ = λu, γu = λϕ. (4.58)

Since TMϕ ∈M ⊂ V as ϕ ∈ G, it follows from the first equation that Au ∈ V = D(A1/2). Therefore,

we apply operator A1/2 from the left in the first equation of (4.57) and substitute η = A1/2u ∈
D(A) ⊂ E:

Aη +Q∗ϕ = λη, η ∈ E, Q∗ = A1/2TM ,

Qη = λϕ, ϕ ∈ G, Q = γA−1/2.
(4.59)
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Introduce the operator

A0 := diag(A; 0), D(A0) = D(A)⊕G, (4.60)

which is considered unperturbed; then we can consider problem (4.59) as a problem about the spectrum
of a perturbed (bounded by terms outside the diagonal) self-adjoint operator

A :=

(
A Q∗
Q 0

)
: D(A)⊕G→ E ⊕G. (4.61)

Note that since the operator A0 is self-adjoint and the operators Q and Q∗ are bounded and compact
(Lemma 4.2), we have that the operator A is an unbounded self-adjoint operator. The problem is to
find how the spectrum of the initial operator A0 changes if this operator is perturbed by terms Q∗
and Q outside the diagonal.

Let us consider this problem and make the properties of solutions of spectral problem (4.59) clear.

Lemma 4.11. The number λ = 0 is not an eigenvalue of problem (4.59), i.e., kerA = {0}.
Proof. For λ = 0, we have from (4.59)

(Aη, η)E + (Q∗ϕ, η)E = 0, (ϕ,Qη)G = 0.

It follows from here that (Aη, η) = ‖η‖2V = 0 and η = 0. Since the operator Q∗ = A1/2TM is invertible,
we obtain from the relation Q∗ϕ = 0 that ϕ = 0.

Lemma 4.12. Problem (4.59) is equivalent to the following spectral problem for a meromorphic spec-
tral sheaf:

ξ = λA−1ξ − λ−1Bξ, B := A−1/2Q∗QA−1/2, ξ = A1/2η. (4.62)

Proof. 1◦. Since for solutions of problem (4.59), we have λ �= 0, we see that ϕ = λ−1Qη, and then

Aη + λ−1Q∗Qη = λη, η ∈ D(A) ⊂ E. (4.63)

Substituting η = A−1/2ξ and applying operator A−1/2 from the left, we obtain Eq. (4.62).

2◦. Conversely, if Eq. (4.62) satisfies with operator B = A−1/2Q∗QA−1/2, then we obtain the

following equation after a reverse substitution ξ = A1/2η:

A1/2η = λA−1/2η − λ−1A−1/2Q∗Qη. (4.64)

It follows from this equation that η ∈ D(A). Therefore, applying operator A1/2 from the left, we
obtain Eq. (4.63), and introducing ϕ, we obtain problem (4.59).

The operators A−1 and B in problem (4.62) are compact and self-adjoint. Hence A−1 > 0 and
B ≥ 0. Therefore, the self-adjoint Fredholm sheaf I − λA−1 + λ−1B, which is invertible at any point
of the complex plane outside the real axis, refers to problem (4.62). This follows from the fact that
problem (4.59), which is equivalent to problem (4.62), can have a spectrum only at the real axis.
It shows that the spectrum of problems (4.62) and (4.59) can be discrete with possible limit points
λ = ∞ and λ = 0.

Theorem 4.11. Problem (4.62) and the equivalent problem (4.59) have a real spectrum consisting of
two branches of eigenvalues {λ−k }∞k=1 ⊂ [−‖B‖, 0] and {λ+k }∞k=1 ⊂ [λ1(A),+∞) of the finite multiplicity
with limit points −0 and +∞ respectively.

The following estimates hold for eigenvalues λ−k :

−λk(B) ≤ λ−k ≤ −λk(B)/(1 + λk(B)‖A−1‖), k = 1, 2, . . . , (4.65)

and for the eigenvalues λ+k , the following estimates are valid:

λk(A) ≤ λ+k ≤ λk(A) + ‖B‖, k = 1, 2, . . . . (4.66)

The eigenelements of problem (4.59) form an orthogonal basis in space E ⊕G.
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Proof. Since the operator A from (4.61) is a compact perturbation of operator A0 (see (4.60)) and the
operator A0 has the points +∞ and 0 as the limit spectrum, we have, by virtue of the well-known
Weyl theorem, that the operator A has the same points as the limit spectrum. Since λ = 0 is not an
eigenvalue of problem (4.59) (see Lemma 4.11), we have that there exists a branch {λ−k }∞k=1 of real

eigenvalues of finite multiplicities with a limit point at zero. The branch {λ+k }∞k=1, lim
k→∞

λ+k = +∞
refers to the limit point λ = +∞.

Let λ be an eigenvalue of problem (4.62) and ξ �= 0 be the corresponding eigenelement. Then

λ2(A−1ξ, ξ)E − λ(ξ, ξ)E − (Bξ, ξ)E = 0. (4.67)

It follows from here that eigenvalues λ can be found among the values of functionals

p±(ξ) :=
(ξ, ξ)E ±

√
(ξ, ξ)2E + 4(A−1ξ, ξ)E · (Bξ, ξ)E

2(A−1ξ, ξ)E
, ξ �= 0,

that are roots of Eq. (4.67). They are called the Rayleigh functionals (see [1] and [31, p. 81]). For
p+(ξ), we have

p+(ξ) ≥ (ξ, ξ)E
(A−1ξ, ξ)E

≥ λ1(A) > 0,

and for p−(ξ), we have that

−‖B‖ ≤ p−(ξ) ≤ 0.

Therefore, {λ−k }∞k=1 ⊂ [−‖B‖, 0] and {λ+k }∞k=1 ⊂ [λ1(A),+∞).
Let us obtain the estimates (4.65) and (4.66) for the two branches of eigenvalues.
Introduce the functional

p̃+(ξ) := − 1

p−(ξ)
= − 2(A−1ξ, ξ)E

(ξ, ξ)E −
√
(ξ, ξ)2E + 4(A−1ξ, ξ)E · (Bξ, ξ)E

=
(ξ, ξ)E +

√
(ξ, ξ)2E + 4(A−1ξ, ξ)E · (Bξ, ξ)E

2(Bξ, ξ)E
.

Then

0 ≤ p̃+(ξ)− (ξ, ξ)E
(Bξ, ξ)E

= . . . =
2(A−1ξ, ξ)E

(ξ, ξ)E +
√
(ξ, ξ)2E + 4(A−1ξ, ξ)E · (Bξ, ξ)E

≤ (A−1ξ, ξ)E
(ξ, ξ)E

≤ ‖A−1‖.

We obtain the following inequalities:

(ξ, ξ)E
(Bξ, ξ)E

≤ p̃+(ξ) ≤ (ξ, ξ)E
(Bξ, ξ)E

+ ‖A−1‖.

These inequalities and the variation principles for polynomial operator sheaves (see [1] and [31, p. 81])
imply that

1

λk(B)
≤ − 1

λ−k
≤ 1

λk(B)
+ ‖A−1‖, k = 1, 2, . . . .

Thus, we obtain inequalities (4.65). Inequalities (4.66) are proved similarly.
The fact that problem (4.59) has a discrete spectrum with a finite number (two) of limit points

(see, e.g., [51, Secs. 146–150] and [9, p. 268]) implies that eigenelements of problem (4.59) form an
orthogonal basis.

Theorem 4.11 and inequalities (4.65) and (4.66) imply that the following asymptotic formulas hold
for the two branches of eigenvalues of problem (4.59):

λ−k = −λk(B)[1 + o(1)], k → ∞; λ+k = λk(A) +O(1), k → ∞.
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Thus, passing from the operator A0 to the operator A, the eigenvalues λ+k are shifted to the right of the

numbers λk(A) no farther than ‖B‖. Moreover, the second branch of eigenvalues {λ−k }∞k=1 ⊂ [−‖B‖, 0]
with a limit point at zero arises. Unstable modes of normal motions refer to such branch in convection
problems.

4.5. Problems of normal motions of dynamical systems with surface dissipation of en-
ergy. Consider the following boundary-value problem for the wave equation in an arbitrary domain
Ω ∈ R

m with a Lipschitz boundary Γ := ∂Ω:

∂2u

∂t2
−Δu = f(t, x), x ∈ Ω, (4.68)

with the boundary condition

∂u

∂n
+ u+ β

∂u

∂t
= 0, x ∈ Γ, β > 0, (4.69)

and the initial conditions

u(0, x) = u0(x),
∂u

∂t
(0, x) = u1(x), x ∈ Ω. (4.70)

Problems of this type are called problems with surface dissipation of energy (see [6, 7, 14, 15, 26]).
The boundary condition (4.69) here contains the derivative with respect to t of the unknown function.
Therefore, such conditions are called dynamical. The corresponding term β(∂u/∂t)Γ, β > 0, generates
surface dissipation of the total energy of the dynamical system.

Consider a homogeneous problem (4.68)–(4.70) without initial conditions and find its solutions in
the form of normal motions:

u(t, x) = e−λtu(x), x ∈ Ω, λ ∈ C.

The following spectral problem for the amplitude function u(x) arises:

−Δu+ λ2u = 0, x ∈ Ω;
∂u

∂n
+ u− λβu = 0, x ∈ Γ. (4.71)

Problem (4.71) can be generalized to a multicomponent spectral conjugation problem with surface
dissipation (or pumping) of energy which can be formulated in terms of operators from abstract Green
formula (3.29) and operators of auxiliary boundary-value problems. The problem is to find nonzero
elements u ∈ V that are solutions of the following problem:

Lu+ λ2au = 0, ∂u− βλ(Jα)γu = 0, β > 0, λ ∈ C, (4.72)

where L, ∂, and γ are the operators from Green formula (3.29), J and α are defined in (4.8) and (4.9)
and below, and a ∈ L(E), a� 0.

Using Theorem 3.3 on the representation of any element from V , we obtain from (4.72) that

u = A−1(−λ2au) + TM (βλ(Jα)γu) = −λ2A−1au+ βλTM (Jα)γu.

Finding u in the form u = A−1/2η, η ∈ E, we obtain the equation

M(λ)η := (I − βλB + λ2A)η = 0, η ∈ E, (4.73)

where the operators A and B are defined by formulas (4.12) and (4.13):

A = A−1/2aA−1/2, B = Q∗(Jα)Q, Q = γA−1/2, Q∗ = A1/2TM . (4.74)

The spectral problem (4.73) describes normal motions of multicomponent systems with surface
dissipation of energy (if J = I) and with energy pump (if J �= I). It will be studied in detail in
another paper.

The authors are grateful to M. S. Agranovich for his attention to the problems under consideration
and for his helpful advice.
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spectral parameter in boundary conditions on smooth and nonsmooth boundaries,” Russ. J. Math.
Phys., 6, No. 3, 247–281 (1999).

4. M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, and N. N. Voitovich, Generalized Method
of Eigenoscillations in Diffraction Theory, Wiley, Berlin (1999).

5. M. S. Agranovich and R. Mennicken, “Spectral value problems for the Helmholtz equation with
spectral parameter in boundary condition on a nonsmooth surface,” Sb. Math., 190, No. 1, 29–69
(1998).

6. O. A. Andronova and N. D. Kopachevsky, “Mixed and spectral problems with surface dissipation
of energy,” in: Proc. of Ukrainian Sci. Conf. of Young Scientists and Students on Differential
Equations and Applications (in honor of Ya. B. Lopatinskii), Donetsk (Ukraine), December 6-7
(2006), pp. 12–13.

7. O. Andronova and N. Kopachevsky, “Operator approach to dynamic systems with surface dissi-
pation of energy,” in: Int. Conf. “Modern Analysis and Applications” dedicated to the centenary
of Mark Krein, Odessa, Ukraine, April 9-14 (2007), p. 11.

8. N. K. Askerov, S. G. Krein, and G. I. Laptev, “Oscillations of a viscous liquid and the associated
operational equations,” Funkts. Anal. Prilozh., 2, No. 2, 21–31 (1968).

9. T. Ya. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with
Indefinite Metric [in Russian], Nauka, Moscow (1986).

10. T. Ya. Azizov and N. D. Kopachevsky, “On the basis property of the system of eigen- and
associated elements of the S. G. Krein problem on normal oscillations of a viscous fluid in an
open vessel,” in: Spectral and Evolutionary Problems, 3 (1994), pp. 38–39.

11. V. V. Barkovskii, “A decomposition by eigenfunctions and eigenvectors related to general elliptic
problems with an eigenvalue in the boundary condition,” Ukr. Mat. Zh., 19, No. 1, (1967).

12. B. V. Bazalii and S. P. Degtyarev, “On the Stefan problem with kinetic and classical conditions
at a free boundary,” Ukr. Mat. Zh., 44, No. 2, 155–166 (1992).

13. J. Below and G. François, “Spectral asymptotics for the Laplacian under an eigenvalue-dependent
boundary condition,” Bull. Belgian Math. Soc. Simon Stevin, 12, No. 4, 505–519 (2005).

14. I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems [in Russian],
Ada, Krakov (1999).

15. I. Chueshov, M. Eller, and I. Lasiecka, “Finite dimension of the attractor for a semilinear wave
equation with nonlinear boundary dissipation,” Commun. PDE, 29, No 1–12, 1847-1876 (2004).

16. J. Ercolano and M. Schechter, “Spectral theory for operators generated by elliptic boundary-value
problems with eigenvalue parameter in boundary conditions,” Commun. Pure Appl. Math., 18,
83–105 (1965).

17. S. F. Feshchenko, I. A. Lukovskii, B. I. Rabinovich, and L. V. Dokuchaev, Methods of Determi-
nation of Adjoint Fluid Masses in Moving Domains [in Russian], Naukova Dumka, Kiev, 216–224
(1969).

18. E. Gagliardo, “Caratterizzazioni delle trace sulla frontiera relative ad alaine classi di funzioni in
n variabili,” Rend. Semin. Mat. Univ. Padova, 27, 284–305 (1957).

19. I. C. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Non-Self-Adjoint Operators,
Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, Rhode Island (1969).

20. V. I. Gorbachuk and M. L. Gorbachuk, Boundary-Value Problems for Differential Operator Equa-
tions [in Russian], Naukova Dumka, Kiev (1984).

170



21. V. A. Grinshtein and N. D. Kopachevsky, On the Spectra of Bounded Self-Adjoint Operators [in
Russian], preprint (1989).

22. V. A. Grinshtein and N. D Kopachevsky, “On the p-basicity of a system of eigenelements of a self-
adjoint operator-valued function,” Proc. XV All-Union School on Operator Theory in Functional
Spaces, Ul’yanovsk, September 5–12, 1990, 1, (1990), p. 12.

23. N. D. Kopachevsky, “On the basis properties of a system of eigenvectors and associated vectors
of a self-adjoint operator sheaf I − λA− λ−1B,” Funkts. Anal. Prilozh., 15, No. 2, 77–78 (1981).

24. N. D. Kopachevsky, “On the p-basis property of the system of root vectors of a self-adjoint
operator pensil I − λA− λ−1B,” in: Functional Analysis and Applied Mathematics [in Russian],
Naukova Dumka, Kiev (1982), pp. 43–55.

25. N. D. Kopachevsky, “On the abstract Green formula for a triplet of Hilbert spaces and its appli-
cation to the Stokes problem,” Taurida Bull. Inform. Math., No. 2, 52–80 (2004).

26. N. D. Kopachevsky, “On abstract boundary value problems with surface dissipation of energy,”
in: Proc. Int. Conf. “Analysis and Partial Differential Equations” (in honor of Prof. B. Bojarsky),
Bedlevo, Poland, June 18–24, (2006), p. 23.

27. N. D. Kopachevsky, “The abstract Green formula for mixed boundary-value problems,” Uch. Zap.
Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern., 20(59), No. 2, 3–12 (2007).

28. N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics.
Vol. 1. Self-Adjoint Problems for Ideal Fluids, Birkhäuser, Basel–Boston–Berlin (2001).
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